Атом взрыв. Классификация ядерных взрывов по видам и мощности

Ядерное оружие

Я́дерное ору́жие - совокупность ядерных боеприпасов, средств их доставки к цели и средств управления. Относится к оружию массового поражения (наряду с биологическим и химическим оружием). Ядерный боеприпас - взрывное устройство, использующее ядерную энергию - энергию, высвобождающуюся в результате лавинообразно протекающей цепной ядерной реакции деления тяжёлых ядер и/или термоядерной реакции синтеза лёгких ядер.

Действие ядерного оружия основано на использовании энергии взрыва ядерного взрывного устройства, высвобождающейся в результате неуправляемой лавинообразно протекающей цепной реакции деления тяжёлых ядер и/или реакции термоядерного синтеза.

Ядерные взрывы могут быть следующих видов:

· воздушный - в тропосфере

· высотный - в верхних слоях атмосферы и в ближнем околопланетном космосе

· космический - в дальнем околопланетном космосе и любой другой области космического пространства

· наземный взрыв - у самой земли

· подземный взрыв (под поверхностью земли)

· надводный (у самой поверхности воды)

· подводный (под водой)

Поражающие факторы ядерного взрыва:

· ударная волна

· световое излучение

· проникающая радиация

· радиоактивное заражение

· электромагнитный импульс (ЭМИ)

Соотношение мощности воздействия различных поражающих факторов зависит от конкретной физики ядерного взрыва. Например, для термоядерного взрыва характерны более сильные чем у т.н. атомного взрыва световое излучение, гамма-лучевой компонент проникающий радиации, но значительно более слабые корпускулярный компонент проникающей радиации и радиоактивное заражение местности.

Люди, непосредственно подвергшиеся воздействию поражающих факторов ядерного взрыва, кроме физических повреждений, которые зачастую являются фатальными для человека, испытывают мощное психологическое воздействие от ужасающего вида картины взрыва и разрушений. Электромагнитный импульс (ЭМИ) непосредственного влияния на живые организмы не оказывает, но может нарушить работу электронной аппаратуры (ламповая электроника и фотонная аппаратура сравнительно нечувствительны к воздействию ЭМИ).

Классификация ядерных боеприпасов

Все ядерные боеприпасы могут быть разделены на две основные категории:

· «атомные» - однофазные или одноступенчатые взрывные устройства, в которых основной выход энергии происходит от ядерной реакции деления тяжёлых ядер (урана-235 или плутония) с образованием более лёгких элементов

· термоядерные (также «водородные») - двухфазные или двухступенчатые взрывные устройства, в которых последовательно развиваются два физических процесса, локализованных в различных областях пространства: на первой стадии основным источником энергии является реакция деления тяжёлых ядер, а на второй реакции деления и термоядерного синтеза используются в различных пропорциях, в зависимости от типа и настройки боеприпаса

Мощность ядерного заряда измеряется в тротиловом эквиваленте - количестве тринитротолуола, которое нужно взорвать для получения той же энергии. Обычно его выражают в килотоннах (кт) и мегатоннах (Мт). Тротиловый эквивалент условен: во-первых, распределение энергии ядерного взрыва по различным поражающим факторам существенно зависит от типа боеприпаса, и, в любом случае, сильно отличается от химического взрыва. Во-вторых, просто невозможно добиться полного сгорания соответствующего количества химического взрывчатого вещества.

Принято делить ядерные боеприпасы по мощности на пять групп:

· сверхмалые (менее 1 кт)

· малые (1 - 10 кт)

· средние (10 - 100 кт)

· крупные (большой мощности) (100 кт - 1 Мт)

· сверхкрупные (сверхбольшой мощности) (свыше 1 Мт)

Варианты детонации ядерных боеприпасов

Пушечная схема

«Пушечная схема» использовалась в некоторых моделях ядерного оружия первого поколения. Суть пушечной схемы заключается в выстреливании зарядом пороха одного блока делящегося материала докритической массы («пуля») в другой - неподвижный («мишень»).

Классическим примером пушечной схемы является бомба «Малыш» («Little Boy»), сброшенная на Хиросиму 6 августа 1945 г.

Имплозивная схема

Имплозивная схема детонации использует обжатие делящегося материала сфокусированной ударной волной, создаваемой взрывом химической взрывчатки. Для фокусировки ударной волны используются так называемые взрывные линзы, и подрыв производится одновременно во многих точках с высокой точностью. Формирование сходящейся ударной волны обеспечивалось использованием взрывных линз из «быстрой» и «медленной» взрывчаток - ТАТВ (триаминотринитробензол) и баратола (смесь тринитротолуола с нитратом бария), и некоторыми добавками (см. анимацию). Создание подобной системы расположения взрывчатки и подрыва являлось в своё время одной из наиболее сложных и трудоёмких задач. Для её решения потребовалась выполнить гигантский объём сложных вычислений по гидро- и газодинамике.

Вторая из применённых атомных авиабомб - «Толстяк» («Fat Man»), - сброшенная на Нагасаки 9 августа 1945 года, была исполнена по такой же схеме.

Мощность ядерных боеприпасов

Ядерное оружие обладает колоссальной мощностью. При делении урана

массой порядка килограмма освобождается такое же количество энергии, как

при взрыве тротила массой около 20 тысяч тонн. Термоядерные реакции синтеза являются еще более энергоемкими.

Ядерные боеприпасы - боеприпасы, содержащие ядерный заряд.

Ядерными боеприпасами являются:

ядерные боевые части баллистических, зенитных, крылатых ракет и торпед;

ядерные бомбы;

артиллерийские снаряды, мины и фугасы.

Мощность взрыва ядерных боеприпасов принято измерять в единицах тротилового эквивалента. Тротиловый эквивалент-это масса тринитротолуола, которая обеспечила бы взрыв, по мощности эквивалентный взрыву данного ядерного боеприпаса. Обычно он измеряется в килотоннах (кТ) или в мегатоннах (МгТ). Тротиловый эквивалент условен, поскольку распределение энергии ядерного взрыва по различным поражающим факторам существенно зависит от типа боеприпаса и, в любом случае, сильно отличается от химического взрыва. Современные ядерные боеприпасы имеют тротиловый эквивалент от нескольких десятков тонн до нескольких десятков млн. тонн тротила.

В зависимости от мощности ядерные боеприпасы принято делить на 5 калибров: сверхмалый (менее 1кТ), малый (от 1 до 10 кТ), средний (от 10 до 100 кТ), крупный (от 100 кТ до 1 МгТ), сверхкрупный (свыше 1 МгТ)

Термоядерными зарядами комплектуются боеприпасы сверхкрупного, крупного и среднего калибров; ядерными зарядами - сверхмалого, малого и среднего калибров, нейтронными зарядами комплектуются боеприпасы - сверхмалого и малого калибров.

Поражающие факторы ядерного взрыва

Ядерный взрыв способен мгновенно уничтожить или вывести из строя незащищенных людей, открыто стоящую технику, сооружения и различные материальные средства. Основными поражающими факторами ядерного взрыва (ПФЯВ) являются:

ударная волна;

световое излучение;

проникающая радиация;

радиоактивное заражение местности;

электромагнитный импульс (ЭМИ).

При ядерном взрыве в атмосфере распределение выделяющейся энергии между ПФЯВ примерно следующее: около 50% на ударную волну, на долю светового излучения 35%, на радиоактивное заражение 10% и 5% на проникающую радиацию и ЭМИ.

Ударная волна

Ударная волна в большинстве случаев является основным поражающим фактором ядерного взрыва. По своей природе она подобна ударной волне вполне обычного взрыва, но действует более продолжительное время и обладает гораздо большей разрушительной силой. Ударная волна ядерного взрыва может на значительном расстоянии от центра взрыва наносить поражения людям, разрушать сооружения и повреждать боевую технику.

Ударная волна представляет собой область сильного сжатия воздуха, распространяющуюся с большой скоростью во все стороны от центра взрыва. Скорость распространения ее зависит от давления воздуха во фронте ударной волны; вблизи центра взрыва она в несколько раз превышает скорость звука, но с увеличением расстояния от места взрыва резко падает. За первые 2 сек. ударная волна проходит около 1000 м, за 5 сек - 2000 м, за 8 сек. - около 3000 м.

Поражающее действия ударной волны на людей и разрушающее действие на боевую технику, инженерные сооружения и материальные средства прежде всего определяются избыточным давлением и скоростью движения воздуха в ее фронте. Незащищенные люди могут, кроме того, поражаться летящими с огромной скоростью осколками стекла и обломками разрушаемых зданий, падающими деревьями, а также разбрасываемыми частями боевой техники, комьями земли, камнями и другими предметами, приводимыми в движение скоростным напором ударной волны. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери населения могут оказаться большими, чем от непосредственного действия ударной волны. Поражения, наносимые ударной волной, подразделяются на

1) легкие,

2) средние,

3) тяжелые и

4) крайне тяжелые.

Степень поражения ударной волной зависит прежде всего от мощности и вида ядерного взрыва. При воздушном взрыве мощностью 20 кТ легкие травмы у людей возможны на расстояниях до 2,5 км, средние - до 2 км, тяжелые - до 1,5 км, крайне тяжелые - до 1,0 км от эпицентра взрыва. С ростом калибра ядерного боеприпаса радиусы поражения ударной волной растут пропорционально корню кубическому из мощности взрыва.

Гарантированная защита людей от ударной волны обеспечивается при укрытии их в убежищах. В случае отсутствия убежищ используются естественные укрытия и рельеф местности.

При подземном взрыве возникает ударная волна в грунте, а при подводном - в воде. Ударная волна, распространяясь в грунте, вызывает повреждения подземных сооружений, канализации, водопровода; при распространении ее в воде наблюдается повреждение подводной части кораблей, находящихся даже на значительном расстоянии от места взрыва.

Применительно к гражданским и промышленным зданиям степени разрушения характеризуются 1) слабым,

2) средним,

3) сильным и 4) полным разрушениями.

Слабое разрушение сопровождается разрушением оконных и дверных заполнений и легких перегородок, частично разрушается кровля, возможны трещины в стенах верхних этажей. Подвалы и нижние этажи сохраняются полностью.

Среднее разрушение проявляется в разрушении крыш, внутренних перегородок, окон, обрушением чердачных перекрытий, трещинами в стенах. Восстановление зданий возможно при проведении капитальных ремонтных работ.

Сильное разрушение характеризуется разрушением несущих конструкций и перекрытий верхних этажей, появлением трещин в стенах. Использование зданий становится невозможным. Ремонт и восстановление зданий становится нецелесообразным.

При полном разрушении обрушаются все основные элементы здания, включая и несущие конструкции. Использовать такие здания невозможно, и, чтобы они не представляли опасность, их полностью обрушают.

Необходимо отметить способность ударной волны. Она может, как вода, "затекать" в закрытые помещения не только через окна и двери, но также через небольшие отверстия и даже щели. Это приводит к разрушению перегородок и оборудования внутри здания и поражению находящихся в нем людей.

Ядерное оружие обладает колоссальной мощностью. При делении урана

массой порядка килограмма освобождается такое же количество энергии, как

при взрыве тротила массой около 20 тысяч тонн. Термоядерные реакции синтеза являются еще более энергоемкими. Мощность взрыва ядерных боеприпасов принято измерять в единицах тротилового эквивалента. Тротиловый эквивалент-это масса тринитротолуола, которая обеспечила бы взрыв, по мощности эквивалентный взрыву данного ядерного боеприпаса. Обычно он измеряется в килотоннах (кТ) или в мегатоннах (МгТ).

В зависимости от мощности ядерные боеприпасы делят на калибры:

Сверхмалый (менее 1кТ)

Малый (от 1 до 10 кТ)

Средний (от 10 до 100 кТ)

Крупный (от 100 кТ до 1 МгТ)

Сверхкрупный (свыше 1 МгТ)

Термоядерными зарядами комплектуются боеприпасы сверхкрупного, крупного

и среднего калибров; ядерными-сверхмалого, малого и среднего калибров,

нейтронными-сверхмалого и малого калибров.

1.5 Виды ядерных взрывов

В зависимости от задач, решаемых ядерным оружием, от вида и расположения

объектов, по которым планируются ядерные удары, а также от характера

предстоящих боевых действий ядерные взрывы могут быть осуществлены в

воздухе, у поверхности земли (воды) и под землей (водой). В соответствии

с этим различают следующие виды ядерных взрывов:

Воздушный (высокий и низкий)

Наземный (надводный)

Подземный (подводный)

1.6 Поражающие факторы ядерного взрыва.

Ядерный взрыв способен мгновенно уничтожить или вывести из строя

незащищенных людей, открыто стоящую технику, сооружения и различные

материальные средства. Основными поражающими факторами ядерного взрыва являются:

Ударная волна

Световое излучение

Проникающая радиация

Радиоактивное заражение местности

Электромагнитный импульс

Рассмотрим их:

а) Ударная волна в большинстве случаев является основным поражающим

фактором ядерного взрыва. По своей природе она подобна ударной волне

обычного взрыва, но действует более продолжительное время и обладает

гораздо большей разрушительной силой. Ударная волна ядерного взрыва

может на значительном расстоянии от центра взрыва наносить поражения

людям, разрушать сооружения и повреждать боевую технику.

Ударная волна представляет собой область сильного сжатия воздуха,

распространяющуюся с большой скоростью во все стороны от центра взрыва.

Скорость распространения ее зависит от давления воздуха во фронте

ударной волны; вблизи центра взрыва она в несколько раз превышает

скорость звука, но с увеличением расстояния от места взрыва резко падает.

За первые 2 сек ударная волна проходит около 1000 м, за 5 сек-2000 м,

за 8 сек - около 3000 м. Это служит обоснованием норматива N5 ЗОМП

"Действия при вспышке ядерного взрыва": отлично - 2 сек, хорошо - 3 сек,

удовлетврительно-4 сек.

Поражающее действие ударной волны на людей и разрушающее действие на

боевую технику, инженерные сооружения и материальные средства прежде

всего определяются избыточным давлением и скоростью движения воздуха в

ее фронте. Избыточное давление - это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением перед ним. Оно измеряется в ньютонах на квадратный метр (Н/м 2). Эта единица давления называется паскалем (Па). 1 Н/м 2 =1 Па (1 кПа0,01 кгс/см 2).

При избыточном давлении 20-40 кПа незащищенные люди могут получить легкие поражения (легкие ушибы и контузии). Воздействие ударной волны с избыточным давлением 40-60 кПа приводит к поражениям средней тяжести: потеря сознания, повреждению органов слуха, сильным вывихам конечностей, кровотечению из носа и ушей. Тяжелые травмы возникают при избыточном давлении свыше 60 кПа и характеризуются сильными контузиями всего организма, переломами конечностей повреждением внутренних органов. Крайне тяжелые поражения, нередко со смертельным исходом, наблюдаются при избыточном давлении свыше 100 кПа.

Незащищенные люди могут, кроме того, поражаться летящими с

огромной скоростью осколками стекла и обломками разрушаемых зданий,

падающими деревьями, а также разбрасываемыми частями боевой техники,

комьями земли, камнями и другими предметами, приводимыми в движение

скоростным напором ударной волны. Наибольшие косвенные поражения будут наблюдаться в населенных пунктах и в лесу; в этих случаях потери войск могут оказаться большими, чем от непосредственного действия ударной волны.

Ударная волна способна наносить поражения и в закрытых помещениях,

проникая туда через щели и отверстия.

С ростом калибра ядерного боеприпаса радиусы поражения ударной волной

растут пропорционально корню кубическому из мощности взрыва. При подземном взрыве возникает ударная волна в грунте, а при подводном - в воде.

Кроме того, при этих видах взрывов часть энергии расходуется на создание

ударной волны и в воздухе. Ударная волна, распространяясь в грунте,

вызывает повреждения подземных сооружений, канализации, водопровода;

при распространении ее в воде наблюдается повреждение подводной части

кораблей, находящихся даже на значительном расстоянии от места взрыва.

б) Световое излучение ядерного взрыва представляет собой поток

лучистой энергии, включающей ультрафиолетовое, видимое и инфракрасное

излучение. Источником светового излучения является светящаяся область,

состоящая из раскаленных продуктов взрыва и раскаленного воздуха. Яркость

светового излучения в первую секунду в несколько раз превосходит яркость

Поглощенная энергия светового излучения переходит в тепловую, что

приводит к разогреву поверхностного слоя материала. Нагрев может быть

настолько сильным, что возможно обугливание или воспламенение горючего

материала и растрескивание или оплавление негорючего, что может приводить

к огромным пожарам. При этом действие светового излучения ядерного взрыва

эквивалентно массированному применению зажигательного оружия, которое

рассматривается в четвертом учебном вопросе.

Кожный покров человека также поглощает энергию светового излучения, за

счет чего может нагреваться до высокой температуры и получать ожоги. В

первую очередь ожоги возникают на открытых участках тела, обращенных в

сторону взрыва. Если смотреть в сторону взрыва незащищенными глазами, то

возможно поражение глаз, приводящее к полной потере зрения.

Ожоги, вызываемые световым излучением, не отличаются от обычных,

вызываемых огнем или кипятком. Они тем сильнее, чем меньше расстояние до

взрыва и чем больше мощность боеприпаса. При воздушном взрыве поражающее действие светового излучения больше, чем при наземном той же мощности.

В зависимости от воспринятого светового импульса ожоги делятся на три

степени. Ожоги первой степени проявляются в поверхностном поражении кожи: покраснении, припухлости, болезненности. При ожогах второй степени на коже появляются пузыри. При ожогах третьей степени наблюдается омертвление кожи и образование язв.

При воздушном взрыве боеприпаса мощностью 20 кТ и прозрачности атмосферы порядка 25 км ожоги первой степени будут наблюдаться в радиусе 4,2

км от центра взрыва; при взрыве заряда мощностью 1 МгТ это расстояние

увеличится до 22,4 км. Ожоги второй степени проявляются на расстояниях

2,9 и 14,4 км и ожоги третьей степени ­­­­­- на расстояниях 2,4 и 12,8 км

соответственно для боеприпасов мощностью 20 кТ и 1МгТ.

в) Проникающая радиация представляет собой невидимый поток гамма-

квантов и нейтронов, испускаемых из зоны ядерного взрыва. Гамма-кванты

и нейтроны распространяются во все стороны от центра взрыва на сотни

метров. С увеличением расстояния от взрыва количество гамма-квантов и

нейтронов, проходящее через единицу поверхности, уменьшается. При

подземном и подводном ядерных взрывах действие проникающей радиации

распространяется на расстояния, значительно меньшие, чем при наземных и

воздушных взрывах, что объясняется поглощением потока нейтронов и гамма-

квантов водой.

Зоны поражения проникающей радиацией при взрывах ядерных боеприпасов

средней и большой мощности несколько меньше зон поражения ударной волной и световым излучением. Для боеприпасов с небольшим тротиловым эквивалентом (1000 тонн и менее) наоборот, зоны поражающего действия проникающей радиацией превосходят зоны поражения ударной волной и световым излучением.

Поражающее действие проникающей радиации определяется способностью

гамма-квантов и нейтронов ионизировать атомы среды, в которой они распространяются. Проходя через живую ткань, гамма-кванты и нейтроны ионизируют атомы и молекулы, входящие в состав клеток, которые приводят к

нарушению жизненных функций отдельных органов и систем. Под влиянием

ионизации в организме возникают биологические процессы отмирания и разложения клеток. В результате этого у пораженных людей развивается специфическое заболевание, называемое лучевой болезнью.

г) Основными источниками радиоактивного заражения являются продукты деления ядерного заряда и радиоактивные изотопы, образующиеся в результате воздействия нейтронов на материалы, из которых изготовлен ядерный боеприпас, и на некоторые элементы, входящие в состав грунта в районе взрыва.

При наземном ядерном взрыве светящаяся область касается земли. Внутрь ее затягиваются массы испаряющегося грунта, которые поднимаются вверх. Охлаждаясь, пары продуктов деления грунта конденсируются на твердых частицах. Образуется радиоактивное облако. Оно поднимается на многокилометровую высоту, а затем со скоростью 25-100 км/ч движется по ветру. Радиоактивные частицы, выпадая из облака на землю, образуют зону радиоактивного заражения (след), длина которой может достигать нескольких сот километров.

Радиоактивное заражение людей, боевой техники, местности и различных

объектов при ядерном взрыве обусловливается осколками деления вещества

заряда и непрореагировавшей частью заряда, выпадающими из облака взрыва,

а также наведенной радиоактивностью.

С течением времени активность осколков деления быстро уменьшается,

особенно в первые часы после взрыва. Так, например, общая активность

осколков деления при взрыве ядерного боеприпаса мощностью 20 кТ через

один день будет в несколько тысяч раз меньше, чем через одну минуту после

При взрыве ядерного боеприпаса часть вещества заряда не подвергается

делению, а выпадает в обычном своем виде; распад ее сопровождается образованием альфа-частиц. Наведенная радиоактивность обусловлена радиоактивными изотопами, образующимися в грунте в результате облучения его нейтронами, испускаемыми в момент взрыва ядрами атомов химических элементов, входящих в состав грунта. Образовавшиеся изотопы, как правило,

бета-активны, распад многих из них сопровождается гамма-излучением.

Периоды полураспада большинства из образующихся радиоактивных изотопов, сравнительно невелики-от одной минуты до часа. В связи с этим наведенная активность может представлять опасность лишь в первые часы после взрыва и только в районе, близком к его эпицентру.

Основная часть долгоживущих изотопов сосредоточена в радиоактивном

облаке, которое образуется после взрыва. Высота поднятия облака для

боеприпаса мощностью 10 кТ равна 6 км, для боеприпаса мощностью 10 МгТ

она составляет 25 км. По мере продвижения облака из него выпадают сначала

наиболее крупные частицы, а затем все более и более мелкие, образуя по

пути движения зону радиоактивного заражения, так называемый след облака.

Размеры следа зависят главным образом от мощности ядерного боеприпаса,

а также от скорости ветра и могут достигать в длину несколько сотен и в

ширину нескольких десятков километров.

Поражения в результате внутреннего облучения появляются в результате

попадания радиоактивных веществ внутрь организма через органы дыхания и

желудочно-кишечный тракт. В этом случае радиоактивные излучения вступают

в непосредственный контакт с внутренними органами и могут вызвать

сильную лучевую болезнь; характер заболевания будет зависеть от количества радиоактивных веществ, попавших в организм.

На вооружение, боевую технику и инженерные сооружения радиоактивные

вещества не оказывают вредного воздействия.

д) Электромагнитный импульс - это кратковременное электромагнитное поле, возникающее при взрыве ядерного боеприпаса в результате взаимодействия гамма-лучей и нейтронов, испускаемых пои ядерном взрыве, с атомами окружающей среды. Следствием его воздействия перегорание или пробои отдельных элементов радиоэлектронной и электротехнической аппаратуры.

Поражение людей возможно только в тех случаях, когда они в момент взрыва соприкасаются с протяженными проводными линиями.

Наиболее надежным средством защиты от всех поражающих факторов ядерного взрыва являются защитные сооружения. В поле следует укрываться за прочными местными предметами, обратными скатами высот, в складках местности.

При действиях в зонах заражения для защиты органов дыхания, глаз и открытых участков тела от радиоактивных веществ используются средства защиты органов дыхания (противогазы, респираторы, противопыльные тканевые маски и ватно-марлевые повязки), а также средства защиты кожи.

Особенности поражающего действия нейтронных боеприпасов.

Нейтронные боеприпасы являются разновидностью ядерных боеприпасов. Их основу составляют термоядерные заряды, в которых используются ядерные реакции деления и синтеза. Взрыв такого боеприпаса оказывает поражающее воздействие прежде всего на людей за счет мощного потока проникающей радиации, в котором значительная часть (до 40%) приходится на так называемые быстрые нейтроны.

При взрыве нейтронного боеприпаса площадь зоны поражения проникающей радиацией превосходит площадь зоны поражения ударной волной в несколько раз. В этой зоне техника и сооружения могут оставаться невредимыми, а люди получают смертельные поражения.

Для защиты от нейтронных боеприпасов используются те же средства и способы, что и для защиты от обычных ядерных боеприпасов. Кроме того, при сооружении убежищ и укрытий рекомендуется уплотнять и увлажнять грунт, укладываемый над ними, увеличивать толщину перекрытий, устраивать дополнительную защиту входов и выходов. Защитные свойства техники повышаются применением комбинированной защиты, состоящей из водородосодержащих веществ (например, полиэтилена) и материалов с высокой плотностью (свинец).

Ядерный взрыв представляет собой неуправляемый процесс. В ходе него осуществляется высвобождение большого количества лучистой и тепловой энергии. Данный эффект является результатом ядерной цепной реакции деления либо термоядерного синтеза, проходящей за небольшой временной отрезок.

Краткие общие сведения

Ядерный взрыв по своему происхождению может являться следствием человеческой деятельности на Земле либо в околоземном пространстве. Это явление также в ряде случаев возникает в результате природных процессов на некоторых видах звезд. Искусственный ядерный взрыв представляет собой мощное оружие. Применяется оно для уничтожения масштабных наземных и подземных защищенных объектов, скоплений техники и войск противника. Кроме того, используется это оружие для полного уничтожения и подавления противоборствующей стороны в качестве инструмента, разрушающего малые и большие населенные пункты с проживающими в них мирными гражданами, а также промышленные стратегические объекты.

Классификация

Как правило, ядерные взрывы характеризуют по двум признакам. К ним относят мощность заряда и местоположение точки заряда непосредственно в подрывной момент. Проекция этой точки на поверхность земли именуется эпицентром взрыва. Мощность измеряют в тротиловом эквиваленте. Это масса тринитротолуола, при подрыве которого происходит выделение такого же количества энергии, как и при оцениваемом ядерном. Чаще всего при измерении мощности используются такие единицы, как одна килотонна (1 кт) и одна мегатонна (1 Мт) тротилового эквивалента.

Явления

Ядерный взрыв сопровождается специфическими эффектами. Они характерны только для данного процесса и не присутствуют при прочих подрывах. Интенсивность явлений, которые сопровождают ядерный взрыв, зависит от местоположения центра. В качестве примера можно рассмотреть случай, являвшийся наиболее частым до момента запрета испытаний на планете (под водой, на земле, в атмосфере) и, собственно, в космосе, - искусственная цепная реакция в приземном слое. После детонирования процесса синтеза или деления за весьма краткое время (около долей микросекунд) происходит выделение в ограниченном объеме огромного количества тепловой и лучистой энергии. О завершении реакции, как правило, свидетельствует разлет конструкции устройства и испарения. Эти эффекты обусловлены влиянием повышенной температуры (до 107 К) и огромного давления (порядка 109 атм.) в самом эпицентре. С большого расстояния визуально данная фаза представляет собой очень яркую светящуюся точку.

Электромагнитное излучение

Световое давление во время реакции начинает нагревать и вытеснять окружающий воздух из эпицентра. В результате формируется огненный шар. Вместе с этим образуется скачок давления между сжатым излучением и невозмущенным воздухом. Это обусловлено превосходством скорости перемещения нагревательного фронта над звуковой скоростью в условиях среды. После того как ядерная реакция входит в стадию затухания, прекращается выделение энергии. Последующее расширение осуществляется благодаря разнице в давлениях и температурах в зоне огненного шара и непосредственно окружающего воздуха. Следует отметить, что рассматриваемые явления не имеют ничего общего с научными изысканиями героя современного сериала (его, кстати, зовут так же, как и известного физика Глэшоу - Шелдон) "Теория большого взрыва".

Проникающая радиация

Ядерные реакции представляют собой источник электромагнитного излучения разного типа. В частности, оно проявляется в широком спектре в диапазоне от радиоволн до гамма-квантов, атомных ядер, нейтронов, быстрых электронов. Появляющееся излучение, именуемое проникающей радиацией, в свою очередь, порождает определенные последствия. Они свойственны только ядерному взрыву. Высокоэнергичные гамма-кванты и нейтроны в процессе взаимодействия с атомами, входящими в состав окружающего вещества, претерпевают преобразование своей стабильной формы в радиоактивные изотопы нестабильного типа с разными периодами и путями полураспада. В результате формируется так называемая наведенная радиация. Вместе с осколками ядер атомов расщепляющегося вещества либо с продуктами от термоядерного синтеза, которые остаются от взрывного устройства, получившиеся радиоактивные компоненты поднимаются в атмосферу. Далее они рассеиваются на достаточно большой территории и формируют заражение на местности. Нестабильные изотопы, сопровождающие ядерный взрыв, находятся в таком спектре, что распространение радиации может продолжаться тысячелетиями, несмотря на то что интенсивность излучения со временем снижается.

Электромагнитный импульс

Образованные от ядерного взрыва высокоэнергичные гамма-кванты в процессе прохождения через окружающую среду ионизируют атомы, входящие в ее состав, выбивая электроны из них и сообщая им довольно большую энергию для осуществления каскадной ионизации прочих атомов (вплоть до тридцати тысяч ионизаций на гамма-квант). В итоге под эпицентром формируется "пятно" ионов, имеющих положительный заряд и окруженных электронным газом в огромном количестве. Данная конфигурация носителей, переменная во времени, образует мощное электрическое поле. Оно вместе с рекомбинацией ионизированных атомных частиц исчезает после взрыва. В процессе происходит порождение сильных электрических токов. Они служат в качестве дополнительного источника излучения. Весь описанный комплекс эффектов носит название электромагнитного импульса. Несмотря на то что в него уходит меньше 1/3 десятимиллиардной доли взрывной энергии, происходит он в течение весьма короткого периода. Мощность, которая при этом выделяется, может достигнуть 100 ГВт.

Процессы наземного типа. Особенности

В процессе химической детонации температура примыкавшего к заряду и привлеченного к движению грунта сравнительно невелика. Ядерный взрыв имеет свои особенности. В частности, температура грунта может составлять десятки миллионов градусов. Большая часть образованной от нагрева энергии в течение первых же мгновений выделяется в воздух и идет дополнительно на образование ударной волны и теплового излучения. При обычном взрыве данных явлений не наблюдается. В связи с этим отмечаются резкие различия в воздействии на грунтовый массив и поверхность. При наземном взрыве химического соединения передается до половины энергии в грунт, а при ядерном - буквально несколько процентов. Это обуславливает разницу в размерах воронки и энергии сейсмических колебаний.

Ядерная зима

Данное понятие характеризует гипотетическое состояние климата на планете в случае широкомасштабной войны с применением ядерного оружия. Предположительно, в связи с выносом в стратосферу огромного количества сажи и дыма, результатов многочисленных пожаров, спровоцированных несколькими боезарядами, на Земле температура понизится повсеместно до арктических показателей. Это будет обусловлено и значительным увеличением числа отраженных от поверхности солнечных лучей. Вероятность возникновения глобального похолодания была предсказана достаточно давно (еще во времена существования Советского Союза). Позже подтверждение гипотезы было осуществлено модельными расчетами.