Генетический код состоит из. Что такое генетический код: общие сведения

Экология жизни. Психология: Во все времена людей интересовало их будущее, поэтому они часто обращались к гадалкам и прорицателям. Влиятельные люди, имеющие власть, особенно беспокоились о том, что же им приготовила судьба, поэтому могли держать при себе личных пророков. В более древние времена, например, у греков, даже сами боги зависели от судьбы и подчинялись богиням судеб.

Во все времена людей интересовало их будущее, поэтому они часто обращались к гадалкам и прорицателям. Влиятельные люди, имеющие власть, особенно беспокоились о том, что же им приготовила судьба, поэтому могли держать при себе личных пророков. В более древние времена, например, у греков, даже сами боги зависели от судьбы и подчинялись богиням судеб. В современное время судьбой занимается уже наука и ученые, существует много интересных открытий, которые помогают нам понять свою сущность и будущее.

Наука выяснила, что действительно, есть определенный сценарий судьбы, основанный на генетическом коде человека , от которого зависит какой у него будет темперамент, и какими он будет обладать способностями.

Генетический код формируется нашими родителями и содержит в себе качества и возможности . Но их наличие не всегда значит их воплощение – они могут получить развитие при благоприятных условиях или же не развиться вовсе.

Способности реализуются в максимальном количестве у психологически здоровых людей, которые постоянно стараются развиваться духовно и физически. Они всегда учатся и достигают новых этапов развития. Люди, страдающие различными невротическими расстройствами, находят множество отговорок и причин, почему у них не получается добиваться успехов, обвиняют в этом судьбу и жизнь.

Если темперамент – это физиологическая характеристика и зависит от генного набора, то характер формируется в процессе воспитания , при помощи и непосредственном участии родителей. Пока ребенок ещё несамостоятельный, в его жизни большую роль играют мама и папа и то, как они себя ведут. Воспитание играет очень важную роль, оно как скульптор - создает из основы уже готовое произведение.

Двое детей, воспитанные в одной семье, будут различаться по характеру и поведению, ведь у них разный генетический код и темперамент, поэтому в итоге братья и сестры могут быть совсем не похожи. Характер - это система стойких, практически постоянных индивидуальных свойств личности, которые отражают ее отношение и поведение относительно себя, людей и труда. Характер обладает несколькими основными качествами – целостностью, активностью, твердостью, устойчивостью и пластичностью.

Количественные параметры

Целостность – это отсутствие противоречий в отношении к людям, себе, окружающему миру и труду. Целостность выражается в балансе, в совокупности всех черт и интересов личности, в сочетаемости отношений к разным сторонам жизни. Я считаю, что большинство характеров целостные, в том смысле, что внешнее поведение человека отражает его внутреннюю систему отношений.

Это значит, что если человек ведет себя двулично, то и внутри он имеет резкие противоречия своего содержания. Так женщины часто неудачно выбирают себе партнеров, будучи психологически неподготовленными и не знающими, что значат комплименты и признания в любви их избранников.

Необходимо внимательно слушать и взвешивать каждое слово. Если человек говорит девушке, что красивее ее никого нет, что она добрее и лучше всех – значит, перед вами бабник. Ему есть с кем сравнить, и он так может увлечься вскоре другой, и каждая очередная будет также самой красивой.

Если молодой человек уверяет, что не видит смысла жизни без любимой, что без нее он окажется потерянным и совсем пропадет, то скорее всего - это алкоголик или же тот, кто в будущем им обязательно станет. Крайне важно знать эти поведенческие моменты, чем шире у вас будет кругозор, тем меньше вероятности появления несчастных личных историй в вашей жизни.

Активность выражается в способности противодействовать неблагоприятным обстоятельствам и количестве той энергии, которая уходит на борьбу с преградами. В зависимости от активности, характеры бывают сильные и слабые. Сила характера напрямую зависит от социогена – личностного комплекса. Человек со слабым характером также может выполнить требования, диктуемые социогеном, потому что реализация активности определяется характером. И если направление активности сочетается с судьбой, то человеку хватит энергии.

Твердость проявляется в неотступности и упорстве человека в процессе достижения цели и отстаивании своего мнения. Порой излишняя твердость характера может стать упрямством. Устойчивость определяет неизменность нашего характера, несмотря на изменчивость мира, событий и нашего положения в социуме. Характер является достаточно стабильной характеристикой, поэтому изменить его крайне трудно. Личности, обладающие неустойчивым характером, скорее всего в целом имеют много психологических проблем, и одна из главных – нестабильность.

Пластичность – умение подстраиваться под изменившийся мир, умение меняться и приспосабливаться к совсем непривычной реальности, в стрессовых ситуациях. Если даже при коренных переменах характер неизменен, это говорит о его ригидности.

Параметры количественные

Знаменитый психотерапевт Берн, учитывая огромное разнообразие качеств характера, выделил три основных параметра, по которым можно определять характер: отношения с собой – это «Я», отношения с близкими – это «Вы», отношения со всеми людьми в целом – это «Они».

Берн предположил, что эти качества, заложенные в человека родителями в детстве, могут иметь как положительную окраску, так и отрицательную, и определяют в будущем его поведение и жизненный путь, названный им «сценарием». Зачастую люди не понимают, почему с ними происходят именно такие события, и не связывают их со своим детством. В систему Берна я добавил четвертый параметр – «Труд».

Если детство у человека прошло благополучно, и он получил хорошее воспитание, то всё параметры будут положительны, со знаком "плюс". Но если в воспитании родители совершили ошибки, то соответственно, некоторые или все параметры обретают знак "минус", при этом может сформироваться комплекс – социоген, который будет сильно влиять на поведение и судьбу человека.

Индивид является гармоничной и здоровой личностью при параметре «Я» с «+» . Это значит, у него правильное воспитание, он адекватно оценивает себя и осознает успешным. Не следует путать позицию с самооценкой. Позиция практически не осознается человеком и формируется под влиянием родителей в детстве, ее направленность достаточно сложно изменить.

Самооценка может зависеть от ситуации. Если у человека слишком высокие требования к себе и к событиям, то значит самооценка – низкая. Никакие успехи и удачи не удовлетворят человека, он всё время будет хотеть ещё лучше, всегда видеть недочеты и минусы.

При позиции «Вы» с «+» отношения с близкими и окружающими людьми благополучны, дружны, и приносят радость. Человек всегда готов помочь своим близким, поддержать, он считает их успешными людьми. Если преобладает «-» в параметре «Вы», это значит настрой у человека изначально враждебный и конфликтный относительно близких людей. Часто такие личности отличаются колким юмором, критичностью относительно всего и всех, придирчивостью и недовольством. Чтобы построить отношения с такими людьми, приходится им постоянно уступать.

При общении они чаще выбирают роль Преследователя, но бывают и Избавители. В таком амплуа скрывается не видная на первый взгляд агрессия. Например, это руководители, берущие на себя все важные вопросы и сложные задачи, тем самым тормозящие рост своих коллег.

Когда параметр «Они» имеет значение «+» - человек любит общаться с людьми, знакомиться и заводить новых друзей. В людях он видит много положительного, интересного и достойного. Если параметр «Они» с «-», то человек сначала замечает в людях недостатки, и только потом их достоинства. Сам при этом крайне застенчив, сложен в общении и неохотно идет на контакт и заводит новые знакомства.

Когда «Труд» у индивида в «+» , то он наслаждается процессом работы, предпочитает решать сложные задачи для саморазвития и профессионального роста, ему доставляет удовольствие находить творческие решения вопросов. Материальная составляющая для него не столь важна, но он достигает высоких показателей и успехов.

Если «Труд» имеет знак «-», то человек обладает четкой направленностью на материальную выгоду. Деньги, а не развитие его волнуют в первую очередь в любой работе. Поэтому он постоянно гонится за большими суммами и лучшей жизнью, в погоне забывая жить здесь и сейчас.

Если в одном из параметров присутствует «-», то положительное значение других вдвойне усиливается, например, если «Вы» с «-», то положительное значение «Я» может слишком гипертрофироваться.

Теперь нам ясно, что личность может быть гармоничной, здоровой и благополучной только со всеми положительными значениями. Только такой человек будет правильно и адекватно воспринимать себя, свои победы и поражения, своих близких и их недостатки и плюсы. Будет успешно контактировать с людьми, расширять круг знакомств, преуспевать в работе и любимом деле, переживать жизненные встряски с мудростью и спокойствием.

Это Вам будет интересно:

Такие люди есть и их немало. И, чтобы таких личностей становилось всё больше, молодым родителям стоит растить своих детей более внимательно, не мешая им развиваться и познавать мир. Поддерживать, но не мешать, не диктовать свои правила и не ломать психику детей.

Ведь дереву никто не мешает расти и оно вырастает крепким и здоровым, так и детям – нужно лишь немного помогать, но не пытаться навязывать свой жизненный план. Ребенок сам знает, что он хочет и что ему интересно, и лучше всего не вмешиваться в его выбор, ведь это его судьба. опубликовано

Используются те же нуклеотиды, за исключением нуклеотида, содержащего тимин , который заменён похожим нуклеотидом, содержащим урацил , который обозначается буквой ( в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв.

Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Тем не менее, в начале 60-х годов XX века новые данные обнаружили несостоятельность гипотезы «кода без запятых». Тогда эксперименты показали, что кодоны, считавшиеся Криком бессмысленными, могут провоцировать белковый синтез в пробирке, и к 1965 году был установлен смысл всех 64 триплетов. Оказалось, что некоторые кодоны просто-напросто избыточны, то есть целый ряд аминокислот кодируется двумя, четырьмя или даже шестью триплетами.

Свойства

Таблицы соответствия кодонов мРНК и аминокислот

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований - от 5" к 3" концу мРНК.

Стандартный генетический код
1-е
основание
2-е основание 3-е
основание
U C A G
U UUU (Phe/F) Фенилаланин UCU (Ser/S) Серин UAU (Tyr/Y) Тирозин UGU (Cys/C) Цистеин U
UUC UCC UAC UGC C
UUA (Leu/L) Лейцин UCA UAA Стоп (Охра ) UGA Стоп (Опал ) A
UUG UCG UAG Стоп (Янтарь ) UGG (Trp/W) Триптофан G
C CUU CCU (Pro/P) Пролин CAU (His/H) Гистидин CGU (Arg/R) Аргинин U
CUC CCC CAC CGC C
CUA CCA CAA (Gln/Q) Глутамин CGA A
CUG CCG CAG CGG G
A AUU (Ile/I) Изолейцин ACU (Thr/T) Треонин AAU (Asn/N) Аспарагин AGU (Ser/S) Серин U
AUC ACC AAC AGC C
AUA ACA AAA (Lys/K) Лизин AGA (Arg/R) Аргинин A
AUG (Met/M) Метионин ACG AAG AGG G
G GUU (Val/V) Валин GCU (Ala/A) Аланин GAU (Asp/D) Аспарагиновая кислота GGU (Gly/G) Глицин U
GUC GCC GAC GGC C
GUA GCA GAA (Glu/E) Глутаминовая кислота GGA A
GUG GCG GAG GGG G
Кодон AUG кодирует метионин и одновременно является сайтом инициации трансляции: первый кодон AUG в кодирующей области мРНК служит началом синтеза белка . Обратная таблица (указаны кодоны для каждой аминокислоты, а также стоп-кодоны)
Ala/A GCU, GCC, GCA, GCG Leu/L UUA, UUG, CUU, CUC, CUA, CUG
Arg/R CGU, CGC, CGA, CGG, AGA, AGG Lys/K AAA, AAG
Asn/N AAU, AAC Met/M AUG
Asp/D GAU, GAC Phe/F UUU, UUC
Cys/C UGU, UGC Pro/P CCU, CCC, CCA, CCG
Gln/Q CAA, CAG Ser/S UCU, UCC, UCA, UCG, AGU, AGC
Glu/E GAA, GAG Thr/T ACU, ACC, ACA, ACG
Gly/G GGU, GGC, GGA, GGG Trp/W UGG
His/H CAU, CAC Tyr/Y UAU, UAC
Ile/I AUU, AUC, AUA Val/V GUU, GUC, GUA, GUG
START AUG STOP UAG, UGA, UAA

Вариации стандартного генетического кода

Первый пример отклонения от стандартного генетического кода был открыт в 1979 году при исследовании генов митохондрий человека. С того времени было найдено несколько подобных вариантов , включая многообразные альтернативные митохондриальные коды, например, прочитывание стоп-кодона УГА в качестве кодона, определяющего триптофан у микоплазм . У бактерий и архей ГУГ и УУГ часто используются как стартовые кодоны. В некоторых случаях гены начинают кодировать белок со старт-кодона , который отличается от обычно используемого данным видом .

В некоторых белках нестандартные аминокислоты, такие как селеноцистеин и пирролизин , вставляются рибосомой, прочитывающей стоп-кодон, что зависит от последовательностей в мРНК. Селеноцистеин сейчас рассматривается в качестве 21-й, а пирролизин 22-й из аминокислот, входящих в состав белков.

Несмотря на эти исключения, у всех живых организмов генетический код имеет общие черты: кодоны состоят из трёх нуклеотидов, где два первых являются определяющими, кодоны транслируются тРНК и рибосомами в последовательность аминокислот.

Отклонения от стандартного генетического кода .
Пример Кодон Обычное значение Читается как:
Некоторые виды дрожжей рода Candida CUG Лейцин Серин
Митохондрии, в частности у Saccharomyces cerevisiae CU(U, C, A, G) Лейцин Серин
Митохондрии высших растений CGG Аргинин Триптофан
Митохондрии (у всех без исключения исследованных организмов) UGA Стоп Триптофан
Ядерный геном инфузории Euplotes UGA Стоп Цистеин или селеноцистеин
Митохондрии млекопитающих, дрозофилы , S. cerevisiae и многих простейших AUA Изолейцин Метионин = Старт
Прокариоты GUG Валин Старт
Эукариоты (редко) CUG Лейцин Старт
Эукариоты (редко) GUG Валин Старт
Прокариоты (редко) UUG Лейцин Старт
Эукариоты (редко) ACG Треонин Старт
Митохондрии млекопитающих AGC, AGU Серин Стоп
Митохондрии дрозофилы AGA Аргинин Стоп
Митохондрии млекопитающих AG(A, G) Аргинин Стоп

Эволюция

Считается, что триплетный код сложился достаточно рано в ходе эволюции жизни. Но существование различий в некоторых организмах, появившихся на разных эволюционных стадиях, указывает на то, что он был не всегда таким.

Согласно некоторым моделям, сначала код существовал в примитивном виде, когда малое число кодонов обозначало сравнительно небольшое число аминокислот. Более точное значение кодонов и большее число аминокислот могли быть введены позже. Сначала только первые два из трёх оснований могли быть использованы для узнавания [что зависит от структуры тРНК].

- Льюин Б. Гены. М. : 1987. C. 62.

См. также

Примечания

  1. Sanger F. (1952). “The arrangement of amino acids in proteins”. Adv. Protein Chem . 7 : 1-67. PMID .
  2. Ичас М. Биологический код. - М. : Мир, 1971.
  3. Watson J. D. , Crick F. H. (April 1953). “Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid”. Nature . 171 : 737-738. PMID . справка)
  4. Watson J. D., Crick F. H. (May 1953). “Genetical implications of the structure of deoxyribonucleic acid”. Nature . 171 : 964-967. PMID . Используется устаревший параметр |month= (справка)
  5. Crick F. H. (April 1966). “The genetic code - yesterday, today, and tomorrow”. Cold Spring Harb. Symp. Quant. Biol. : 1-9. PMID . Используется устаревший параметр |month= (справка)
  6. Gamow G. (February 1954). “Possible relation between deoxyribonucleic acid and protein structures”. Nature . 173 : 318. DOI :10.1038/173318a0 . PMID . Используется устаревший параметр |month= (справка)
  7. Gamow G., Rich A., Ycas M. (1956). “The problem of information transfer from the nucleic acids to proteins”. Adv. Bio.l Med. Phys . 4 : 23-68. PMID .
  8. Gamow G, Ycas M. (1955). “Statistical correlation of protein and ribonucleic acid composition” . Proc. Natl. Acad. Sci. U. S. A . 41 : 1011-1019. PMID .
  9. Crick F. H., Griffith J. S., Orgel L. E. (1957).

Генетические функции ДНК заключаются в том, что она обеспечивает хранение, передачу и реализацию наследственной информации, которая представляет собой информацию о первичной структуре белков (т.е. их аминокислотном составе). Связь ДНК с синтезом белка была предсказана биохимиками Дж. Бидлом и Э. Тейтумом еще в 1944 г. при изучении механизма мутаций у плесневого грибка Neurospora. Информация записана в виде определенной последовательности азотистых оснований в молекуле ДНК с помощью генетического кода. Расшифровку генетического кода считают одним из великих открытий естествознания ХХ в. и по значимости приравнивают к открытию ядерной энергии в физике. Успех в этой области связан с именем американского ученого М. Ниренберга, в лаборатории которого был расшифрован первый кодон — YYY. Однако весь процесс расшифровки занял более 10 лет, в нем участвовало много известных ученых из разных стран, и не только биологи, но и физики, математики, кибернетики. Решающий вклад в разработку механизма записи генетической информации был внесен Г. Гамовым, который первым предположил, что кодон состоит из трех нуклеотидов. Совместными усилиями ученых была дана полная характеристика генетического кода.

Буквы во внутреннем круге — основания в 1-й позиции в кодоне, буквы во втором круге —
основания во 2-й позиции и буквы снаружи второго круга — основания в 3-й позиции.
В последнем круге — сокращенные названия аминокислот. НП — неполярные,
П — полярные аминокислотные остатки.

Основными свойствами генетического кода являются: триплетность , вырожденность и неперекрываемость . Триплетность означает, что последовательность из трех оснований определяет включение в молекулу белка специфической аминокислоты (например, АУГ — метионин). Вырожденность кода заключается в том, что одна и та же аминокислота может кодироваться двумя или несколькими кодонами. Неперекрываемость означает, что одно и то же основание не может входить в состав двух соседних кодонов.

Установлено, что код является универсальным , т.е. принцип записи генетической информации одинаков у всех организмов.

Триплеты, кодирующие одну и ту же аминокислоту, называются кодонами-синонимами. Обычно они имеют одинаковые основания в 1-й и 2-й позициях и различаются только по третьему основанию. Например, включение аминокислоты аланина в молекулу белка кодируют кодоны-синонимы в молекуле РНК — GCA, GCC, GCG, GCY. В составе генетического кода имеются три некодирующих триплета (нонсенс-кодоны — UAG, UGA, UAA), которые играют роль stop-сигналов в процессе считывания информации.

Установлено, что универсальность генетического кода не является абсолютной. При сохранении общего для всех организмов принципа кодирования и особенностей кода в ряде случаев наблюдается изменение смысловой нагрузки отдельных кодовых слов. Это явление получило название неоднозначности генетического кода, а сам код был назван квазиуниверсальным .

Читайте также другие статьи темы 6 "Молекулярные основы наследственности" :

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы" .

В любой клетке и организме все особенности анатомического, морфологического и функционального характера определяются структурой белков, которые входят в них. Наследственным свойством организма является способность к синтезу определенных белков. В аминокислоты расположены в полипептидной цепочке, от которой зависят биологические признаки.
Для каждой клетки характерна своя последовательность нуклеотидов в полинуклеотидной цепи ДНК. Это и есть генетический код ДНК. Посредством его записывается информация о синтезе тех или иных белков. О том, что такое генетический код, о его свойствах и генетической информации рассказывается в этой статье.

Немного истории

Идея о том, что, возможно, генетический код существует, была сформулирована Дж.Гамовым и А.Дауном в середине двадцатого столетия. Они описали, что последовательность нуклеотидов, отвечающая за синтез определенной аминокислоты, содержит по меньшей мере три звена. Позже доказали точное количество из трех нуклеотидов (это единица генетического кода), которое назвали триплет или кодон. Всего нуклеотидов насчитывается шестьдесят четыре, потому что молекулы кислот, где происходит или РНК, состоит из остатков четырех различных нуклеотидов.

Что такое генетический код

Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код.
В ДНК есть четыре нуклеотида:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • тимин - Т.

Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими.
В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:

  • аденин - А;
  • гуанин - Г;
  • цитозин - Ц;
  • урацил - У.

Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.
Белки строятся на где они, расположенные в определенной последовательности, определяют его биологические свойства.

Свойства генетического кода

Триплетность. Единица генетического кода состоит из трех букв, он триплетен. Это означает, что двадцать существующих аминокислот зашифрованы тремя определенными нуклеотидами, которые называются кодонами или трилпетами. Существуют шестьдесят четыре комбинации, которые можно создать из четырех нуклеотидов. Этого количества более чем достаточно для того, чтобы закодировать двадцать аминокислот.
Вырожденность. Каждая аминокислота соответствует более чем одному кодону, за исключением метионина и триптофана.
Однозначность. Один кодон шифрует одну аминокислоту. Например, в гене здорового человека с информацией о бета-цели гемоглобина триплет ГАГ и ГАА кодирует А у всех, кто болен серповидноклеточной анемией, один нуклеотид заменен.
Коллинеарность. Последовательность аминокислот всегда соответствует последовательности нуклеотидов, которую содержит ген.
Генетический код непрерывен и компактен, что означает то, что он не имеет «знаков препинания». То есть, начинаясь на определенном кодоне, идет непрерывное считывание. К примеру, АУГГУГЦУУААУГУГ будет считываться как: АУГ, ГУГ, ЦУУ, ААУ, ГУГ. Но никак не АУГ, УГГ и так далее или как-то еще иначе.
Универсальность. Он един абсолютно для всех земных организмов, от людей до рыб, грибов и бактерий.

Таблица

В представленной таблице присутствуют не все имеющиеся аминокислоты. Гидроксипролин, гидроксилизин, фосфосерин, иодопроизводных тирозина, цистин и некоторые другие отсутствуют, так как они являются производными других аминокислот, кодирующихся м-РНК и образующихся после модификации белков в результате трансляции.
Из свойств генетического кода известно, что один кодон способен кодировать одну аминокислоту. Исключением является выполняющий дополнительные функции и кодирующий валин и метионин, генетический код. ИРНК, находясь в начале с кодоном, присоединяет т-РНК, которая несет формилметион. По завершении синтеза он отщепляется сам и захватывает за собой формильный остаток, преобразуясь в остаток метионина. Так, вышеупомянутые кодоны являются инициаторами синтеза цепи полипептидов. Если же они находятся не в начале, то ничем не отличаются от других.

Генетическая информация

Под этим понятием подразумевается программа свойств, которая передается от предков. Она заложена в наследственности как генетический код.
Реализуется при синтезе белка генетический код :

  • информационной и-РНК;
  • рибосомальной р-РНК.

Информация передается прямой связью (ДНК-РНК-белок) и обратной (среда-белок-ДНК).
Организмы могут получать, сохранять, передавать ее и использовать при этом наиболее эффективно.
Передаваясь по наследству, информация определяет развитие того или иного организма. Но из-за взаимодействия с окружающей средой реакция последнего искажается, благодаря чему и происходит эволюция и развитие. Таким образом в организм закладывается новая информация.


Вычисление закономерностей молекулярной биологии и открытие генетического кода проиллюстрировали то, что необходимо соединить генетику с теорией Дарвина, на основе чего появилась синтетическая теория эволюции — неклассическая биология.
Наследственность, изменчивость и естественный отбор Дарвина дополняются генетически определяемым отбором. Эволюция реализуется на генетическом уровне путем случайных мутаций и наследованием самых ценных признаков, которые наиболее адаптированы к окружающей среде.

Расшифровка кода у человека

В девяностых годах был начат проект Human Genome, в результате чего в двухтысячных были открыты фрагменты генома, содержащие 99,99% генов человека. Неизвестными остались фрагменты, которые не участвуют в синтезе белков и не кодируются. Их роль пока остается неизвестной.

Последняя открытая в 2006 году хромосома 1 является самой длинной в геноме. Более трехсот пятидесяти заболеваний, в том числе рак, появляются в результате нарушений и мутаций в ней.

Роль подобных исследований трудно переоценить. Когда открыли, что такое генетический код, стало известно, по каким закономерностям происходит развитие, как формируется морфологическое строение, психика, предрасположенность к тем или иным заболеваниям, обмен веществ и пороки индивидов.

После открытия правил генетического кода, по которым наследственная информация переписывается с языка нуклеотидов на язык аминокислот, они считались универсальными. Известно не менее 30 случаев, когда генетический код используется в несколько измененном виде. Изменения могут быть самыми разнообразными: изменится значение кодона, стоп-кодон начнет кодировать какую-то аминокислоту, обычный кодон начнет выполнять роль стартового. Мы предлагаем вам десять случаев наиболее любопытных отклонений от стандартного генетического кода.

Несмотря на общепринятую «стандартность» генетического кода, известно несколько десятков примеров, когда живые организмы используют несколько измененную его версию. Некоторые изменения присущи целым таксонам, а некоторые обнаруживаются всего у нескольких видов. Известны случаи, когда часть мРНК определенного гена транслируется по стандартным правилам, а другая - по измененным. Например, при трансляции мРНК малатдегидрогеназы человека, которая закодирована в ядре, в 4% случаев стандартный стоп-кодон кодирует триптофан и аргинин . Очень часто отклонения от стандартного генетического кода наблюдаются только в некоторых органеллах. Так, впервые факт существования таких отклонений подтвердили еще в 1979 году, показав, что генетический код митохондрий человека отличается от ядерного . Наша статья посвящена наиболее удивительным случаям отклонения генетического кода от стандарта .

«Биомолекула» не раз писала о генетическом коде. Статья «Такие разные синонимы » посвящена явлению предпочтения кодонов. В статьях « » и «Эволюция генетического кода » рассказывается об эволюции генетического кода, а в публикациях «Расширенный геном » и «Слово из четырёх букв » можно почитать о перспективах его искусственного расширения.

Blastocrithidia

У простейших рода Blastocrithidia , родственных трипаносомам (рис. 1), генетический код, используемый при трансляции ядерных генов, в прямом смысле «без тормозов»: все три стоп-кодона кодируют аминокислоты. Кодон UGA кодирует триптофан, а UAG и UAA - глутамат. При этом UAA и, реже, UAG все-таки могут выступать в роли терминаторных кодонов. Оказалось, что у одного из белков, необходимых для освобождения рибосомы от мРНК после трансляции, eRF1 , чрезвычайно важный остаток серина заменен на другую аминокислоту, что понижает его сродство к UGA, благодаря чему этот стоп-кодон может функционировать как смысловой. Впрочем, окончательно неизвестно, благодаря чему UAG и UAA могут выступать и как смысловые, и как терминаторные кодоны .

Condylostoma magnum

У инфузории Condylostoma magnum каждый из стандартных стоп-кодонов способен выступать в роли смыслового: UAA и UAG могут кодировать глутамин, а UGA - триптофан. Однако механизм двойного кодирования у этого организма совершенно отличается от Blastocrithidia : значение каждого из стандартных стоп-кодонов зависит от их положения в мРНК. Стоп-кодоны, расположенные в средней части транскрипта , кодируют аминокислоты, а стоп-кодоны, находящиеся вблизи 3′-конца мРНК, работают «по специальности» и выполняют роль терминаторных. Вероятно, 3′-нетранслируемые области генов Condylostoma magnum очень короткие и консервативные и играют роль в распознавании стоп-кодонов .

Acetohalobium arabaticum

Rhabdopleura compacta

Scenedesmus obliquus

Генетический код митохондрий зеленой водоросли Scenedesmus obliquus (рис. 3) необычен тем, что кодон UCA, который обычно кодирует лейцин, функционирует как стоп-кодон. В митохондриальном геноме этой водоросли отсутствует ген, кодирующий тРНК, соответствующую кодону UCA. Вместо этого в митохондриях Scenedesmus obliquus лейцин кодирует стандартный стоп-кодон UAG .

Плоские черви класса Rhabditophora

Radopholus similis

Инфузории-туфельки

Митохондриальный генетический код инфузорий-туфелек (род Paramecium ) отличается от стандартного прежде всего числом стартовых кодонов. В роли старт-кодонов могут выступать целых пять или шесть: AUG, AUA, AUU, AUC, GUG и, возможно, GUA. Поскольку митохондриальный геном этих организмов содержит гены всего трех тРНК, бóльшая часть тРНК поступает из цитоплазмы. В связи с этим в митохондриях инфузорий-туфелек, как и в ядре многих инфузорий, стоп-кодоны UAG и UAA кодируют глутамин .

Ashbya gossypii

У дрожжей Ashbya gossypii в митохондриях кодон CUU, обычно кодирующий лейцин, кодирует аланин. Удивительно, что два других лейциновых кодона, CUC и CUG, в митохондриальном геноме полностью отсутствуют, поэтому у этих организмов лейцин кодируется только двумя кодонами - UUG и UUA - вместо стандартных пяти .

Mycobacterium smegmatis

У бактерии Mycobacterium smegmatis аспарагиновые кодоны приобретают дополнительное значение в стационарной фазе роста, а также в условиях низкого pH. Еще более любопытно, что, благодаря двусмысленности аспарагиновых кодонов, в β-субъединице РНК-полимеразы происходят замены, которые сохраняют ее функциональность, однако делают фермент устойчивым к антибиотику рифампицину, в норме блокирующему его работу , .

Разумеется, вариации стандартного генетического кода не ограничиваются приведенными примерами. Однако исключения только подтверждают правило, и это верно и для генетического кода. Несмотря на колоссальное разнообразие живых организмов, исключения из генетического кода настолько редки, что представляются не более чем любопытными курьезами. Однако эти исключения служат ценным материалом для реконструкции эволюции генетического кода и помогают глубже понять его фундаментальные свойства.

Литература

  1. Julia Hofhuis, Fabian Schueren, Christopher Nötzel, Thomas Lingner, Jutta Gärtner, et. al.. (2016). The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code . Open Biol. . 6 , 160246;
  2. B. G. Barrell, A. T. Bankier, J. Drouin. (1979). A different genetic code in human mitochondria . Nature . 282 , 189-194;
  3. Такие разные синонимы ;
  4. У истоков генетического кода: родственные души ;
  5. Эволюция генетического кода ;
  6. Расширенный геном ;
  7. Слово из четырёх букв ;
  8. Kristína Záhonová, Alexei Y. Kostygov, Tereza Ševčíková, Vyacheslav Yurchenko, Marek Eliáš. (2016). An Unprecedented Non-canonical Nuclear Genetic Code with All Three Termination Codons Reassigned as Sense Codons . Current Biology . 26 , 2364-2369;
  9. Stephen M. Heaphy, Marco Mariotti, Vadim N. Gladyshev, John F. Atkins, Pavel V. Baranov. (2016). Novel Ciliate Genetic Code Variants Including the Reassignment of All Three Stop Codons to Sense Codons inCondylostoma magnum . Mol Biol Evol . 33 , 2885-2889;
  10. L. Prat, I. U. Heinemann, H. R. Aerni, J. Rinehart, P. O"Donoghue, D. Soll. (2012). . . 109 , 21070-21075;
  11. Marleen Perseke, Joerg Hetmank, Matthias Bernt, Peter F Stadler, Martin Schlegel, Detlef Bernhard. (2011). The enigmatic mitochondrial genome of Rhabdopleura compacta(Pterobranchia) reveals insights into selection of an efficient tRNA system and supports monophyly of Ambulacraria . BMC Evol Biol . 11 ;
  12. A. M. Nedelcu. (2000). The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome . Genome Research . 10 , 819-831;
  13. M. J. Telford, E. A. Herniou, R. B. Russell, D. T. J. Littlewood. (2000). Changes in mitochondrial genetic codes as phylogenetic characters: Two examples from the flatworms . Proceedings of the National Academy of Sciences . 97 , 11359-11364;
  14. Joachim EM Jacob, Bartel Vanholme, Thomas Van Leeuwen, Godelieve Gheysen. (2009). A unique genetic code change in the mitochondrial genome of the parasitic nematode Radopholus similis . BMC Research Notes . 2 , 192;
  15. Pritchard A.E., Seilhamer J.J., Mahalingam R., Sable C.L., Venuti S.E., Cummings D.J. (1990). Nucleotide sequence of the mitochondrial genome of Paramecium . Nucleic Acids Res. 18 , 173–180;
  16. Jiqiang Ling, Rachid Daoud, Marc J. Lajoie, George M. Church, Dieter Söll, B. Franz Lang. (2014). Natural reassignment of CUU and CUA sense codons to alanine in Ashbya mitochondria . Nucleic Acids Research . 42 , 499-508;
  17. Jiqiang Ling, Patrick O"Donoghue, Dieter Söll. (2015). Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology . Nat Rev Micro . 13 , 707-721;
  18. B. Javid, F. Sorrentino, M. Toosky, W. Zheng, J. T. Pinkham, et. al.. (2014). Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance . Proceedings of the National Academy of Sciences . 111 , 1132-1137;
  19. Alexander O. Frolov, Marina N. Malysheva, Anna I. Ganyukova, Vyacheslav Yurchenko, Alexei Y. Kostygov. (2017). Life cycle of Blastocrithidia papi sp. n. (Kinetoplastea, Trypanosomatidae) in Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae) . European Journal of Protistology . 57 , 85-98;
  20. Johannes Sikorski, Alla Lapidus, Olga Chertkov, Susan Lucas, Alex Copeland, et. al.. (2010). Complete genome sequence of Acetohalobium arabaticum type strain (Z-7288T) . Stand. Genomic Sci. . 3 , 57-65.