С2 химия егэ теория. Задача С2 на ЕГЭ по химии

В 2012 году предложена новая форма задания С2 - в виде текста, описывающего последовательность экспериментальных действий, которые нужно превратить в уравнения реакций.
Трудность такого задания состоит в том, что школьники очень плохо представляют себе экспериментальную, не бумажную химию, не всегда понимают используемые термины и протекающие процессы. Попробуем разобраться.
Очень часто понятия, которые химику кажутся совершенно ясными, абитуриентами воспринимаются неправильно, не так, как предполагалось. В словаре приведены примеры неправильного понимания.

Словарь непонятных терминов.

  1. Навеска - это просто некоторая порция вещества определенной массы (её взвесили на весах ). Она не имеет никакого отношения к навесу над крыльцом.
  2. Прокалить - нагреть вещество до высокой температуры и греть до окончания химических реакций. Это не «смешивание с калием» и не «прокалывание гвоздём».
  3. «Взорвали смесь газов» - это значит, что вещества прореагировали со взрывом. Обычно для этого используют электрическую искру. Колба или сосуд при этом не взрываются !
  4. Отфильтровать - отделить осадок от раствора.
  5. Профильтровать - пропустить раствор через фильтр, чтобы отделить осадок.
  6. Фильтрат - это профильтрованный раствор .
  7. Растворение вещества - это переход вещества в раствор. Оно может происходить без химических реакций (например, при растворении в воде поваренной соли NaCl получается раствор поваренной же соли NaCl, а не щелочь и кислота отдельно), либо в процессе растворения вещество реагирует с водой и образует раствор другого вещества (при растворении оксида бария получится раствор гидроксида бария). Растворять можно вещества не только в воде, но и в кислотах, в щелочах и т.д.
  8. Выпаривание - это удаление из раствора воды и летучих веществ без разложения содержащихся в растворе твёрдых веществ.
  9. Упаривание - это просто уменьшение массы воды в растворе с помощью кипячения.
  10. Сплавление - это совместное нагревание двух или более твёрдых веществ до температуры, когда начинается их плавление и взаимодействие. С плаванием по реке ничего общего не имеет.
  11. Осадок и остаток. Очень часто путают эти термины. Хотя это совершенно разные понятия. «Реакция протекает с выделением осадка» - это означает, что одно из веществ, получающихся в реакции, малорастворимо. Такие вещества выпадают на дно реакционного сосуда (пробирки или колбы). «Остаток» - это вещество, которое осталось , не истратилось полностью или вообще не прореагировало. Например, если смесь нескольких металлов обработали кислотой, а один из металлов не прореагировал - его могут назвать остатком .
  12. Насыщенный раствор - это раствор, в котором при данной температуре концентрация вещества максимально возможная и больше уже не растворяется.
    Ненасыщенный раствор - это раствор, концентрация вещества в котором не является максимально возможной, в таком растворе можно дополнительно растворить ещё какое-то количество данного вещества, до тех пор, пока он не станет насыщенным.
    Разбавленный и «очень» разбавленный раствор - это весьма условные понятия, скорее качественные, чем количественные. Подразумевается, что концентрация вещества невелика.
    Для кислот и щелочей также используют термин «концентрированный» раствор. Это тоже характеристика условная. Например, концентрированная соляная кислота имеет концентрацию всего около 40%. А концентрированная серная - это безводная, 100%-ная кислота.

Для того, чтобы решать такие задачи, надо чётко знать свойства большинства металлов, неметаллов и их соединений: оксидов, гидроксидов, солей. Необходимо повторить свойства азотной и серной кислот, перманганата и дихромата калия, окислительно-восстановительные свойства различных соединений, электролиз растворов и расплавов различных веществ, реакции разложения соединений разных классов, амфотерность, гидролиз солей и других соединений, взаимный гидролиз двух солей.
Кроме того, необходимо иметь представление о цвете и агрегатном состоянии большинства изучаемых веществ - металлов, неметаллов, оксидов, солей.
Именно поэтому мы разбираем этот вид заданий в самом конце изучения общей и неорганической химии. Рассмотрим несколько примеров подобных заданий.

    Пример 1: Продукт взаимодействия лития с азотом обработали водой. Полученный газ пропустили через раствор серной кислоты до прекращения химических реакций. Полученный раствор обработали хлоридом бария. Раствор профильтровали, а фильтрат смешали с раствором нитрита натрия и нагрели.

Решение:

  1. Литий реагирует с азотом при комнатной температуре, образуя твёрдый нитрид лития:
    6Li + N 2 = 2Li 3 N
  2. При взаимодействии нитридов с водой образуется аммиак:
    Li 3 N + 3H 2 O = 3LiOH + NH 3
  3. Аммиак реагирует с кислотами, образуя средние и кислые соли. Слова в тексте «до прекращения химических реакций» означают, что образуется средняя соль, ведь первоначально получившаяся кислая соль далее будет взаимодействовать с аммиаком и в итоге в растворе будет сульфат аммония:
    2NH 3 + H 2 SO 4 = (NH 4 ) 2 SO 4
  4. Обменная реакция между сульфатом аммония и хлоридом бария протекает с образованием осадка сульфата бария:
    (NH 4 ) 2 SO 4 + BaCl 2 = BaSO 4 + 2NH 4 Cl
  5. После удаления осадка фильтрат содержит хлорид аммония, при взаимодействии которого с раствором нитрита натрия выделяется азот, причём эта реакция идёт уже при 85 градусах:

    Пример 2: Навеску алюминия растворили в разбавленной азотной кислоте, при этом выделялось газообразное простое вещество. К полученному раствору добавили карбонат натрия до полного прекращения выделения газа. Выпавший осадок отфильтровали и прокалили , фильтрат упарили , полученный твёрдый остаток сплавили с хлоридом аммония. Выделившийся газ смешали с аммиаком и нагрели полученную смесь.

Решение:

  1. Алюминий окисляется азотной кислотой, образуя нитрат алюминия. А вот продукт восстановления азота может быть разным, в зависимости от концентрации кислоты. Но надо помнить, что при взаимодействии азотной кислоты с металлами не выделяется водород ! Поэтому простым веществом может быть только азот:
    10Al + 36HNO 3 = 10Al(NO 3 ) 3 + 3N 2 + 18H 2 O
    Al 0 − 3e = Al 3+ | 10
    2N +5 + 10e = N 2 0 3
  2. Если к раствору нитрата алюминия добавить карбонат натрия, то идёт процесс взаимного гидролиза (карбонат алюминия не существует в водном растворе, поэтому катион алюминия и карбонат-анион взаимодействуют с водой). Образуется осадок гидроксида алюминия и выделяется углекислый газ:
    2Al(NO 3 ) 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3 ↓ + 3CO 2 + 6NaNO 3
  3. Осадок - гидроксид алюминия, при нагревании разлагается на оксид и воду:
  4. В растворе остался нитрат натрия. При его сплавлении с солями аммония идёт окислительно-восстановительная реакция и выделяется оксид азота (I) (такой же процесс происходит при прокаливании нитрата аммония):
    NaNO 3 + NH 4 Cl = N 2 O + 2H 2 O + NaCl
  5. Оксид азота (I) - является активным окислителем, реагирует с восстановителями, образуя азот:
    3N 2 O + 2NH 3 = 4N 2 + 3H 2 O

    Пример 3: Оксид алюминия сплавили с карбонатом натрия, полученное твёрдое вещество растворили в воде. Через полученный раствор пропускали сернистый газ до полного прекращения взаимодействия. Выпавший осадок отфильтровали, а к профильтрованному раствору прибавили бромную воду. Полученный раствор нейтрализовали гидроксидом натрия.

Решение:

  1. Оксид алюминия - амфотерный оксид, при сплавлении со щелочами или карбонатами щелочных металлов образует алюминаты:
    Al 2 O 3 + Na 2 CO 3 = 2NaAlO 2 + CO 2
  2. Алюминат натрия при растворении в воде образует гидроксокомплекс:
    NaAlO 2 + 2H 2 O = Na
  3. Растворы гидроксокомплексов реагируют с кислотами и кислотными оксидами в растворе, образуя соли. Однако, сульфит алюминия в водном растворе не существует, поэтому будет выпадать осадок гидроксида алюминия. Обратите внимание, что в реакции получится кислая соль - гидросульфит калия:
    Na + SO 2 = NaHSO 3 + Al(OH) 3
  4. Гидросульфит калия является восстановителем и окисляется бромной водой до гидросульфата:
    NaHSO 3 + Br 2 + H 2 O = NaHSO 4 + 2HBr
  5. Полученный раствор содержит гидросульфат калия и бромоводородную кислоту. При добавлении щелочи нужно учесть взаимодействие с ней обоих веществ:

    NaHSO 4 + NaOH = Na 2 SO 4 + H 2 O
    HBr + NaOH = NaBr + H 2 O

    Пример 4: Сульфид цинка обработали раствором соляной кислоты, полученный газ пропустили через избыток раствора гидроксида натрия, затем добавили раствор хлорида железа (II). Полученный осадок подвергли обжигу. Полученный газ смешали с кислородом и пропустили над катализатором.

Решение:

  1. Сульфид цинка реагирует с соляной кислотой, при этом выделяется газ - сероводород:
    ZnS + HCl = ZnCl 2 + H 2 S
  2. Сероводород - в водном растворе реагирует со щелочами, образуя кислые и средние соли. Поскольку в задании говорится про избыток гидроксида натрия, следовательно, образуется средняя соль - сульфид натрия:
    H 2 S + NaOH = Na 2 S + H 2 O
  3. Сульфид натрия реагирует с хлоридом двухвалентного железа, образуется осадок сульфида железа (II):
    Na 2 S + FeCl 2 = FeS + NaCl
  4. Обжиг - это взаимодействие твёрдых веществ с кислородом при высокой температуре. При обжиге сульфидов выделяется сернистый газ и образуется оксид железа (III):
    FeS + O 2 = Fe 2 O 3 + SO 2
  5. Сернистый газ реагирует с кислородом в присутствии катализатора, образуя серный ангидрид:
    SO 2 + O 2 = SO 3

    Пример 5: Оксид кремния прокалили с большим избытком магния. Полученную смесь веществ обработали водой. При этом выделился газ, который сожгли в кислороде. Твёрдый продукт сжигания растворили в концентрированном растворе гидроксида цезия. К полученному раствору добавили соляную кислоту.

Решение:

  1. При восстановлении оксида кремния магнием образуется кремний, который реагирует с избытком магния. При этом получается силицид магния:

    SiO 2 + Mg = MgO + Si
    Si + Mg = Mg 2 Si

    Можно записать при большом избытке магния суммарное уравнение реакции:
    SiO 2 + Mg = MgO + Mg 2 Si
  2. При растворении в воде полученной смеси растворяется силицид магния, образуется гидроксид магния и силан (окисд магния реагирует с водой только при кипячении):
    Mg 2 Si + H 2 O = Mg(OH) 2 + SiH 4
  3. Силан при сгорании образует оксид кремния:
    SiH 4 + O 2 = SiO 2 + H 2 O
  4. Оксид кремния - кислотный оксид, он реагирует со щелочами, образуя силикаты:
    SiO 2 + CsOH = Cs 2 SiO 3 + H 2 O
  5. При действии на растворы силикатов кислот, более сильных, чем кремниевая, она выделяется в виде осадка:
    Cs 2 SiO 3 + HCl = CsCl + H 2 SiO 3

Задания для самостоятельной работы.

  1. Нитрат меди прокалили, полученный твёрдый осадок растворили в серной кислоте. Через раствор пропустили сероводород, полученный чёрный осадок подвергли обжигу, а твёрдый остаток растворили при нагревании в концентрированной азотной кислоте.
  2. Фосфат кальция сплавили с углём и песком, затем полученное простое вещество сожгли в избытке кислорода, продукт сжигания растворили в избытке едкого натра. К полученному раствору прилили раствор хлорида бария. Полученный осадок обработали избытком фосфорной кислоты.
  3. Медь растворили в концентрированной азотной кислоте, полученный газ смешали с кислородом и растворили в воде. В полученном растворе растворили оксид цинка, затем к раствору прибавили большой избыток раствора гидроксида натрия.
  4. На сухой хлорид натрия подействовали концентрированной серной кислотой при слабом нагревании, образующийся газ пропустили в раствор гидроксида бария. К полученному раствору прилили раствор сульфата калия. Полученный осадок сплавили с углем. Полученное вещество обработали соляной кислотой.
  5. Навеску сульфида алюминия обработали соляной кислотой. При этом выделился газ и образовался бесцветный раствор. К полученному раствору добавили раствор аммиака, а газ пропустили через раствор нитрата свинца. Полученный при этом осадок обработали раствором пероксида водорода.
  6. Порошок алюминия смешали с порошком серы, смесь нагрели, полученное вещество обработали водой, при этом выделился газ и образовался осадок, к которому добавили избыток раствора гидроксида калия до полного растворения. Этот раствор выпарили и прокалили. К полученному твёрдому веществу добавили избыток раствора соляной кислоты.
  7. Раствор иодида калия обработали раствором хлора. Полученный осадок обработали раствором сульфита натрия. К полученному раствору прибавили сначала раствор хлорида бария, а после отделения осадка - добавили раствор нитрата серебра.
  8. Серо-зелёный порошок оксида хрома (III) сплавили с избытком щёлочи, полученное вещество растворили в воде, при этом получился тёмно-зелёный раствор. К полученному щелочному раствору прибавили пероксид водорода. Получился раствор желтого цвета, который при добавлении серной кислоты приобретает оранжевый цвет. При пропускании сероводорода через полученный подкисленный оранжевый раствор он мутнеет и вновь становится зелёным.
  9. (МИОО 2011, тренинговая работа) Алюминий растворили в концентрированном растворе гидроксида калия. Через полученный раствор пропускали углекислый газ до прекращения выделения осадка. Осадок отфильтровали и прокалили. Полученный твердый остаток сплавили с карбонатом натрия.
  10. (МИОО 2011, тренинговая работа) Кремний растворили в концентрированном растворе гидроксида калия. К полученному раствору добавили избыток соляной кислоты. Помутневший раствор нагрели. Выделившийся осадок отфильтровали и прокалили с карбонатом кальция. Напишите уравнения описанных реакций.

Ответы к заданиям для самостоятельного решения:

  1. Cu(NO 3 ) 2 → CuO → CuSO 4 → CuS →СuO → Cu(NO 3 ) 2

    2Cu(NO 3 ) 2 = 2CuO + 4NO 2 + O 2
    CuO + H 2 SO 4 = CuSO 4 + H 2 O
    CuSO 4 + H 2 S = CuS + H 2 SO 4
    2CuS + 3O 2 = 2CuO + 2SO 2
    CuO + 2HNO 3 = Cu(NO 3 ) 2 + H 2 O

  2. Ca 3 (PO 4 ) 2 → P → P 2 O 5 →Na 3 PO 4 → Ba 3 (PO 4 ) 2 → BaHPO 4 или Ba(H 2 PO 4 ) 2

    Ca 3 (PO 4 ) 2 + 5C + 3SiO 2 = 3CaSiO 3 + 2P + 5CO
    4P + 5O 2 = 2P 2 O 5
    P 2 O 5 + 6NaOH = 2Na 3 PO 4 + 3H 2 O
    2Na 3 PO 4 + 3BaCl 2 = Ba 3 (PO 4 ) 2 + 6NaCl
    Ba 3 (PO 4 ) 2 + 4H 3 PO 4 = 3Ba(H 2 PO 4 ) 2

  3. Cu → NO 2 → HNO 3 → Zn(NO 3 ) 2 → Na 2

    Cu + 4HNO 3 = Cu(NO 3 ) 2 + 2NO 2 + 2H 2 O
    4NO 2 + O 2 + 2H 2 O = 4HNO 3
    ZnO + 2HNO 3 = Zn(NO 3 ) 2 + H 2 O
    Zn(NO 3 ) 2 + 4NaOH = Na 2 + 2NaNO 3

  4. NaCl → HCl →BaCl 2 → BaSO 4 → BaS → H 2 S

    2NaCl + H 2 SO 4 = 2HCl + Na 2 SO 4
    2HCl + Ba(OH) 2 = BaCl 2 + 2H 2 O
    BaCl 2 + K 2 SO 4 = BaSO 4 + 2KCl
    BaSO 4 + 4C = BaS + 4CO
    BaS + 2HCl = BaCl 2 + H 2 S

  5. Al 2 S 3 → H 2 S → PbS →PbSO 4
    AlCl 3 → Al(OH) 3

    Al 2 S 3 + 6HCl = 3H 2 S + 2AlCl 3
    AlCl 3 + 3NH 3 + 3H 2 O = Al(OH) 3 + 3NH 4 Cl
    H 2 S + Pb(NO 3 ) 2 = PbS + 2HNO 3
    PbS + 4H 2 O 2 = PbSO 4 + 4H 2 O

  6. Al → Al 2 S 3 → Al(OH) 3 →K → KAlO 2 →AlCl 3



  • Для того, чтобы решать такие задачи, надо чётко знать свойства большинства металлов, неметаллов и их соединений: оксидов, гидроксидов, солей . Необходимо повторить свойства азотной и серной кислот, перманганата и дихромата калия , окислительно-восстановительные свойства различных соединений , электролиз растворов и расплавов различных веществ, реакции разложения соединений разных классов, амфотерность, гидролиз солей и других соединений, взаимный гидролиз двух солей.


  • Пример 1: взаимодействия обработали водой пропустили обработали смешали






  • Пример 2: Навеску алюминия растворили в разбавленной азотной кислоте, при этом выделялось газообразное простое вещество. К полученному раствору добавили карбонат натрия до полного прекращения выделения газа. Выпавший осадок отфильтровали и прокалили , фильтрат упарили , полученный твёрдый остаток сплавили с хлоридом аммония. Выделившийся газ смешали с аммиаком и нагрели полученную смесь.


  • Пример 3: Оксид алюминия сплавили с карбонатом натрия, полученное твёрдое вещество растворили в воде. Через полученный раствор пропускали сернистый газ до полного прекращения взаимодействия. Выпавший осадок отфильтровали, а к профильтрованному раствору прибавили бромную воду. Полученный раствор нейтрализовали гидроксидом натрия.


  • Пример 4: Сульфид цинка обработали раствором соляной кислоты, полученный газ пропустили через избыток раствора гидроксида натрия, затем добавили раствор хлорида железа (II). Полученный осадок подвергли обжигу. Полученный газ смешали с кислородом и пропустили над катализатором.


  • Пример 5: Оксид кремния прокалили с большим избытком магния. Полученную смесь веществ обработали водой. При этом выделился газ, который сожгли в кислороде. Твёрдый продукт сжигания растворили в концентрированном растворе гидроксида цезия. К полученному раствору добавили соляную кислоту.

Курысева Надежда Геннадьевна
учитель химии высшей категории, МОУ СОШ №36 г. Владимир

На факультативных занятиях, в основном, отрабатываются задания части С.

Для этого мы предлагаем подборку заданий из вариантов открытых КИМов прошлых лет.

Можно отрабатывать умения, выполняя задания части С в любой последовательности. Однако мы придерживаемся следующего порядка: вначале решаем задачи С5 и выполняем цепочки С3. (Подобные задания выполнялись учащимися в X классе.) Таким образом закрепляются, система-тизируются и совершенствуются знания и умения учащихся по органической химии.

После изучения темы «Растворы» переходим к решению задач С4 . В теме «Окислительно-восстановительные реакции» знакомим учащихся с методом ионно-электронного баланса (метод полуреакций), а затем отрабатываем умение писать окислительно-восстановительные реакции заданий С1 и С2.

Предлагаем на конкретных примерах посмотреть выполнение отдельных заданий части С .

Задания части С1 проверяют умение составлять уравнения окисли-тельно-восстановительных реакций. Сложность состоит в том, что некото-рые реагенты или продукты реакции пропущены. Учащиеся, логически рас-суждая, должны их определить. Предлагаем два варианта выполнения таких заданий: первый - логические рассуждения и нахождение недостающих ве-ществ; второй - написание уравнения методом ионно-электронного баланса (метод полуреакций - см. приложение №3), а затем составление традицион-ного электронного баланса, т.к. это и требуется от экзаменующегося. В раз-ных случаях учащиеся сами определяют, каким способом предпочтительнее вос-пользоваться. Для обоих вариантов просто необходимо хорошо знать ос-нов-ные окислители и восстановители, а также их продукты. Для этого пред-лагаем учащимся таблицу«Окислители и восста-новители», знакомим с нею (приложение №3).

Предлагаем выполнение задания с использованием первого способа.

Задание. Используя метод электронного баланса, составьте уравнение реакции P + HNO 3 NO 2 + … Определите окислитель и восстановитель.

Азотная кислота - сильный окислитель, следовательно, простое вещество фосфор - восстановитель. Запишем электронный баланс:

HNO 3 (N +5) - окислитель, Р - восстановитель.

Задание. Используя метод электронного баланса, составьте уравнение реакции K 2 Cr 2 O 7 + … + H 2 SO 4 I 2 + Cr 2 ( SO 4 ) 3 + … + H 2 O . Определите окислитель и восстановитель.

K 2 Cr 2 O 7 -окислитель, т. к. хром в высшей степени окисления +6, H 2 SO 4 - среда, следовательно, пропущен восстановитель. Логично предположить, что это ион I - . Запишем электронный баланс:

K 2 Cr 2 O 7 (Cr +6) - окислитель, KI (I -1) - восстановитель.

Наиболее сложные задания С2. Они ориентированы на проверку усвое-ния знаний о химических свойствах неорганических веществ, взаимосвязи веществ различных классов, об условиях необратимого протекания обменных и окислительно-восстановительных реакций и наличия навыков составления уравнений реакций. Выполнение этого задания предусматривает анализ свойств неорганических веществ различных классов, установление генетиче-ской связи между заданными веществами и применение умений составлять уравнения химических реакций с соблюдением правила Бертолле и окисли-тельно-восстановительных реакций.

  1. внимательно проанализировать данные в задании вещества;
  2. используя схему генетической связи между классами веществ, оценить взаимодействие их друг с другом (найти кислотно-основные взаимодейст-вия, обменные, металл с кислотой (или щелочью), металл с неметаллом и др.);
  3. определить степени окисления элементов в веществах, оценить, какое веще-ство может быть только окислителем, только восстановителем, а ка-кое - и окислителем и восстановителем. Далее составить окислительно-вос-становительные реакции.

Задание. Даны водные растворы: хлорида железа (III ), иодида натрия, бихромата натрия, серной кислоты и гидроксида цезия. Приведите уравнения четырех возможных реакций между этими веществами.

Среди предложенных веществ есть кислота и щелочь. Записываем первое уравнение реакции: 2 CsOH + H 2 SO 4 = Cs 2 SO 4 + 2H 2 O.

Находим обменный процесс, идущий с выпадением осадка нераство-римого основания. FeCl 3 + 3CsOH = Fe(OH) 3 ↓ + 3CsCl.

В теме «Хром» изучаются реакции превращения бихроматов в хроматы в щелочной среде.Na 2 Cr 2 O 7 + 2CsOH = Na 2 CrO 4 + Cs 2 CrO 4 + H 2 O.

Проанализируем возможность протекания окислительно-восстанови-тельного процесса. FeCl 3 проявляет окислительные свойства, т.к. железо в высшей степени окисления +3, NaI - восстановитель за счет йода в низшей степени окисления -1.

Используя методику написания окислительно-восстановительных реак-ций, рассмотренную при выполнении заданий части С1 , запишем:

2FeCl 3 + 2NaI = 2NaCl + 2FeCl 2 + I 2

Fe +3 + 1e - →Fe +2

2I -1 - 2 e - →I 2

Задания С2 ЕГЭ по химии: алгоритм выполнения

Задания С2 Единого государственного экзамена по химии ("Набор веществ") на протяжении ряда лет остаются самыми сложными заданиями части С. И это не случайно. В этом задании выпускнику надо уметь применять свои знания о свойствах химических веществ, типах химических реакций, а также умения расставлять коэффициенты в уравнениях на примере самых различных, подчас малознакомых веществ. Как же получить максимальное число баллов на этом задании? Один из возможных алгоритмов его выполнения можно представить следующими четырьмя пунктами:

Рассмотрим подробнее применение этого алгоритма на одном из примеров.

Задание (формулировка 2011 года):

Первая проблема, которая возникает при выполнении задания - понять, что скрывается под названиями веществ. Если человек вместо хлорной кислоты пишет формулу соляной, вместо сульфида калия - сульфит, он резко уменьшает количество правильно написанных уравнений реакций. Поэтому знанию номенклатуры надо уделить самое пристальное внимание. Надо учесть, что в задании могут быть использована и тривиальные названия некоторых веществ: известковая вода, железная окалина, медный купорос и т.п.

Результатом выполнения этого этапа является запись формул предложенного набора веществ.

Охарактеризовать химические свойства предложенных веществ помогает отнесение их определенной группе или классу. При этом для каждого вещества нужно дать характеристики в двух направлениях. Первая - кислотно-основная, обменная характеристика, определяющая возможность вступать в реакции без изменения степени окисления.

По кислотно-основным свойствам веществ можно выделить вещества кислотной природы (кислоты, кислотные оксиды, кислые соли), основной природы (основания, основные оксиды, основные соли), амфотерные соединения, средние соли . При выполнении задания эти свойства можно обозначать сокращенно: "К ", "О ", "А ", "С "

По окислительно-восстановительным свойствам вещества можно классифицировать на окислители и восстановители . Однако часто встречаются вещества, проявляющие окислительно-восстановительную двойственность (ОВД). Такая двойственность может иметь своей причиной то, что один из элементов находится в промежуточной степени окисления. Так, для азота характерна шкала окисления от -3 до +5. Поэтому для нитрита калия KNO 2 , где азот находится в степени окисления +3, характерны свойства и окислителя и восстановителя. Кроме того, в одном соединении атомы разных элементов могут проявлять разные свойства, в результате вещество в целом тоже проявляет ОВД . Примером может служить соляная кислота, которая может быть и окислителем, за счет иона H + и восстановителем, за счет хлорид-иона.

Двойственность не означает одинаковости свойств. Как правило, либо окислительные, либо восстановительные свойства преобладают. Существуют и вещества для которых окислительно-восстановительные свойства нехарактерны. Это наблюдается в том случае, когда атомы всех элементов находятся в своих самых устойчивых степенях окисления. Примером может служить, например, фторид натрия NaF. И, наконец, окислительно-восстановительные свойства вещества могут сильно зависеть от условий, среды при которой проводится реакция. Так, концентрированная серная кислота - сильный окислитель за счет S +6 , а та же кислота в растворе - окислитель средней силы за счет иона H +

Эта характеристика тоже может указываться сокращенно "Ок ","Вс ","ОВД ".

Определим характеристики веществ в нашем задании:
- хромат калия, соль, окислитель (Cr +6 - высшая степень окисления)
- серная кислота, раствор: кислота, окислитель (H +)
- сульфид натрия: соль, восстановитель (S -2 - низшая степень окисления)
- сульфат меди(II), соль, окислитель (Cu +2 - высшая степень окисления)

Кратко это можно было записать так:

С, Ок (Cr +6)

К, ок (H +)

С, Вс (S -2)

С, ок (Cu +2

На этом этапе надо определить, какие реакции возможны между конкретными веществами, а также возможные продукты этих реакций. Помогут в этом уже определенные характеристики веществ. Поскольку для каждого вещества мы дали две характеристики, то нужно рассматривать возможность двух групп реакций: обменных, без изменения степени окисления и ОВР.

Между веществами основной и кислотной природы характерна реакция нейтрализации , обычным продуктом которой является соль и вода (при реакции двух оксидов - только соль). В этой же реакции в роли кислоты или основания могут участвовать амфотерные соединения. В некоторых, достаточно редких случаях, реакция нейтрализации оказывается невозможной, на что обычно указывает прочерк в таблице растворимости. Причиной этого является либо слабость проявления кислотных и основных свойств у исходных соединений, либо протекание окислительно-восстановительной реакции между ними (например: Fe 2 O 3 + HI).

Кроме реакций соединения между оксидами, нужно учитывать также возможность реакции соединения оксидов с водой. В нее вступают многие кислотные оксиды и оксиды наиболее активных металлов, а продуктами являются соответствующие растворимые кислоты и щелочи. Однако вода редко дается как отдельное вещество в задании С2.

Для солей характерна реакция обмена , в которую они могут вступать как между собой, так и с кислотами и со щелочами. Как правило, она протекает в растворе, и критерием возможности ее протекания служит правило РИО - выпадение осадка, выделение газа, образование слабого электролита. В отдельных случаях реакция обмена между солями может осложняться реакцией гидролиза , в результате которого образуются основные соли. Препятствовать реакции обмена может полный гидролиз соли или окислительно-восстановительное взаимодействие между ними. На особый характер взаимодействия солей указывает прочерк в таблице растворимости для предполагаемого продукта.

Отдельно реакция гидролиза может быть зачтена как правильный ответ на задание С2, если в наборе веществ дана вода и соль, подвергающаяся полному гидролизу (Al 2 S 3).

Нерастворимые соли могут вступать в реакции обмена обычно только с кислотами. Возможна также реакция нерастворимых солей с кислотами с образованием кислых солей (Ca 3 (PO 4) 2 + H 3 PO 4 => Ca(H 2 PO 4) 2)

Еще одна сравнительно редко встречающаяся реакция, это реакция обмена между солью и кислотным оксидом. При этом более летучий оксид вытесняется менее летучим (CaСO 3 + SiO 2 => CaSiO 3 + CO 2).

В окислительно-восстановительные реакции могут вступать окислители и восстановители. Возможность этого определяется силой их окислительно-восстановительных свойств. В некоторых случаях возможность протекания реакции можно определить с помощью ряда напряжений металлов (реакции металлов с растворами солей, кислотами). Иногда относительную силу окислителей можно оценить, используя закономерности Периодической системы (вытеснение одного галогена другим). Однако чаще всего здесь потребуется знание конкретного фактического материала, свойств наиболее характерных окислителей и восстановителей (соединений марганца, хрома, азота, серы...), тренировка в написании уравнений ОВР.

Также сложно бывает определить и возможные продукты ОВР. В общем случае можно предложить два правила, помогающие сделать выбор:
- продукты реакции не должны взаимодействовать с исходными веществами, со средой , в которой проводится реакция: если в пробирку налили серную кислоту, там не может получиться КОН, если реакция проводится в водном растворе, там не выпадет в осадок натрий;
- продукты реакции не должны взаимодействовать между собой : в пробирке не может одновременно получиться CuSO 4 и КОН, Cl 2 и KI.

Следует учитывать и такой вид ОВР, как реакции диспропорционирования (самоокисления-самовосстановления). Такие реакции возможны для веществ, где элемент находится в промежуточной степени окисления, а значит, может одновременно и окисляться и восстанавливаться. Второй участник такой реакции выполняет роль среды. Примером может служить диспропорционирование галогенов в щелочной среде.

Химия тем сложна и интересна, что дать общие рецепты на все случаи жизни в ней невозможно. Поэтому наряду с этими двумя группами реакций можно назвать еще одну: специфические реакции отдельных веществ. Успешность написания таких уравнений реакций будет определяться фактическими знаниями химии отдельных химических элементов и веществ.

В прогнозировании реакций для конкретных веществ желательно соблюдать определенный порядок, чтобы не пропустить какой-либо реакции. Можно использовать подход, представленный следующей схемой:

Рассматриваем возможность реакций первого вещества с тремя другими веществами (зеленые стрелки), затем рассматриваем возможность реакций второго вещества с двумя оставшимися (синие стрелки), и, наконец, рассматриваем возможность взаимодействия третьего вещества с последним, четвертым (красная стрелка). Если в наборе будет пять веществ, стрелок будет больше, но часть их в процессе анализа будет зачеркнута.

Итак, для нашего набора, первое вещество:
- K 2 CrO 4 + H 2 SO 4 , ОВР невозможна (два окислителя), обычная реакция обмена тоже невозможна, т.к. предполагаемые продукты растворимы. Здесь мы сталкиваемся со специфичной реакцией: хроматы при взаимодействии с кислотами образуют дихроматы: => K 2 Cr 2 O 7 + K 2 SO 4 + H 2 O
- K 2 CrO 4 + Na 2 S , реакция обмена также невозможна, т.к. предполагаемые продукты растворимы. А вот наличие здесь окислителя и восстановителя позволяют сделать вывод о возможности ОВР. При ОВР S -2 окислится до серы, Cr +6 восстановится до Cr +3 , в нейтральной среде это мог бы быть Cr(OH) 3 . Однако одновременно в растворе образуется КОН. Учитывая амфотерность Cr(OH) 3 и правило, что продукты реакции не должны реагировать друг с другом, приходим к выбору следующих продуктов: => S + K + KOH
- K 2 CrO 4 + CuSO 4 , а вот здесь, возможна реакция обмена между солями, т.к. большинство хроматов нерастворимо в воде: => K 2 SO 4 + CuCrO 4

Второе вещество:
- H 2 SO 4 + Na 2 S , ион водорода недостаточно сильный окислитель, чтобы окислить сульфид-ион, ОВР невозможна. Зато возможна реакция обмена, приводящая к образованию слабого электролита и газообразного вещества: => H 2 S + Na 2 SO 4 ;
- H 2 SO 4 + CuSO 4 - здесь никаких явных реакций нет.

Третье вещество:
- Na 2 S + CuSO 4 , ион меди тоже недостаточно сильный окислитель, чтобы окислить сульфид-ион, ОВР невозможна. Реакция обмена между солями приведет к образованию нерастворимого сульфида меди: => CuS + Na 2 SO 4 .

Результатом третьего этапа должно стать несколько схем возможных реакций. Возможные проблемы:
- реакций слишком много . Поскольку эксперты все равно оценят только четыре первых уравнения реакций, нужно выбрать самые простые реакции, в протекании которых Вы уверены на все 100%, и отбросить слишком сложные, или те, в которых вы не слишком уверены. Так в нашем случае можно было набрать максимальное число баллов и не зная специфичной реакции перехода хроматов в дихроматы. А если вы знаете эту не слишком сложную реакцию, то можно отказаться от уравнивания достаточно сложной ОВР, оставив только простые реакции обмена.
- реакций мало, меньше четырех . Если при анализе реакций пар веществ число реакций оказалось недостаточным, можно рассмотреть возможность взаимодействия трех веществ. Обычно это ОВР, в которых может принимать участие и третье вещество - среда, причем в зависимости от среды продукты реакции могут быть различны. Так в нашем случае, если бы найденных реакций не хватало, можно было дополнительно предложить взаимодействие хромата калия с сульфидом натрия в присутствии серной кислоты. Продуктами реакции в этом случае были бы сера, сульфат хрома(III) и сульфат калия.
Если состояние веществ четко не указано, например, просто сказано "серная кислота" вместо "раствор (подразумевается разбавленный) серной кислоты", можно проанализировать возможность реакций вещества в разных состояниях. В нашем случае, мы могли бы учесть, что концентрированная серная кислота - сильный окислитель за счет S +6 , и может вступать с сульфидом натрия в ОВР с образованием сернистого газа SO 2 .
Наконец, можно учесть возможность протекания реакции по-разному в зависимости от температуры, или от соотношения количеств веществ. Так, взаимодействие хлора со щелочью может на холоду давать гипохлорит, а при нагревании хлорат калия, хлорид алюминия при реакции со щелочью может дать и гидроксид алюминия, и гидроксоалюминат. Все это позволяет для одного набора исходных веществ написать не одно, а два уравнения реакций. Но надо учитывать, что это противоречит условию задания: "между всеми предложенными веществами, не повторяя пары реагентов ". Поэтому, будут ли все такие уравнения зачтены, зависит от конкретного набора веществ и усмотрения эксперта.