Реферат: Таламус и гипоталамус: строение, важнейшие свойства. Таламус — это отдел мозга: структура, функции, за что отвечает Зрительные центры таламуса и коры

Оглавление темы "Передний мозг, prosencephalon. Промежуточный мозг, diencephalon.":

Таламус, thalamus. Строение таламуса. Ядра таламуса. Функции и значение таламуса

Thalamus, таламус, представляет собой большое парное скопление серого вещества в боковых стенках промежуточного мозга по бокам III желудочка , имеющее яйцевидную форму, причем передний его конец заострен в виде tuberculum anterius , а задний расширен и утолщен в виде подушки, pulvinar .

Деление на передний конец и подушку соответствует функциональному делению thalamus на центры афферентных путей (передний конец) и на зрительный центр (задний) .

Дорсальная поверхность покрыта тонким слоем белого вещества - stratum zonule . В латеральном своем отделе она обращена в полость бокового желудочка, отделяясь от соседнего с ней хвостатого ядра пограничной бороздкой, sulcus terminalis, являющейся границей между telencephalon , к которому принадлежит хвостатое ядро, и diencephalon , к которому относится таламус . По этой бороздке проходит полоска мозгового вещества, stria terminalis .

Медиальная поверхность таламуса , покрытая тонким слоем серого вещества, расположена вертикально и обращена в полость III желудочка, образуя его латеральную стенку. Сверху она отграничивается от дорсальной поверхности посредством белой мозговой полоски, stria medullaris thalami . Обе медиальные поверхности таламусов соединены между собой серой спайкой - adhesio interthalamica , лежащей почти посередине. Латеральная поверхность таламуса граничит с внутренней капсулой, capsula interna .

Нижней своей поверхностью таламус располагается над ножкой мозга, срастаясь с ее покрышкой. Как видно на разрезах, серая масса таламуса белыми прослойками, laminae medullares thalami , разделяется на отдельные ядра, носящие названия в зависимости от их топографии: передние, центральные, медиальные, латеральные, вентральные и задние.

Функциональное значение таламуса очень велико. В нем переключаются афферентные пути: в его подушке, pulvinar , где находится заднее ядро, оканчивается часть волокон зрительного тракта (подкорковый центр зрения, ассоциативное ядро таламуса), в передних ядрах - пучок, идущий от corpora mamillaria и связывающий таламус с обонятельной сферой, и, наконец, все остальные афферентные чувствительные пути от нижележащих отделов центральной нервной системы в остальных его ядрах, причем lemniscus medialis заканчивается в латеральных ядрах.


Таким образом, thalamus является подкорковым центром почти всех видов чувствительности . Отсюда чувствительные пути идут частью в подкорковые ядра (благодаря чему таламус является чувствительным центром экстрапирамидной системы), частью - непосредственно в кору (tractus thalamocorticalis) .


Основную массу промежуточного мозга (20г) составляет таламус. Парный орган яйцевидной формы, передняя часть которого заострена (передний бугорок), а задняя расширенная (подушка) нависает над коленчатыми телами. Левый и правый таламусы соединены межталамической спайкой. Серое вещество таламуса разделено пластинками белого вещества на переднюю, медиальную и латеральную части. Говоря о таламусе, включают также метаталамус (коленчатые тела), принадлежащий к таламической области. Таламус наиболее развит у человека. Таламус (thalamus), зрительный бугор, - ядерный комплекс, в котором происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга.

Морфофункциональная организация

Таламус (thalamus), зрительный бугор, - ядерный комплекс, в котором происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, мозжечка, базальных ганглиев головного мозга. В ядрах таламуса происходит переключение информации, поступающей от экстеро-, проприорецепторов и интерорецепторов и начинаются таламокортикальные пути. Учитывая, что коленчатые тела являются подкорковыми центрами зрения и слуха, а узел уздечки и переднее зрительное ядро участвует в анализе обонятельных сигналов, можно утверждать, что зрительный бугор в целом является подкорковой «станцией» для всех видов чувствительности. Здесь раздражения внешней и внутренней среды интегрируются, после чего поступают в кору большого мозга.

Зрительный бугор является центром организации и реализации инстинктов, влечений, эмоций. Возможность получать информацию о состоянии множества систем организма позволяет таламусу участвовать в регуляции и определении функционального состояния организма. В целом (подтверждением тому служит наличие в таламусе около 120 разнофункциональных ядер).

Функции ядер таламуса

Ядра образуют своеобразные комплексы, которые можно разделить по признаку проекции в кору на 3 группы. Передняя проецирует аксоны своих нейронов в поясную извилину коры большого мозга. Медиальная - в лобную долю коры. Латеральная - в теменную, височную, затылочную доли коры. Ядра таламуса функционально по характеру входящих и выходящих из них путей делятся на специфические, неспецифические и ассоциативные.

Специфические сенсорные и несенсорные ядра

К специфическим ядрам относятся переднее вентральное, медиальное, вентролатеральное, постлатеральное, постмедиальное, латеральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно. Основной функциональной единицей специфических таламических ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении информации, идущей в кору большого мозга от кожных, мышечных и других рецепторов.

В свою очередь специфические (релейные) ядра делятся на сенсорные и несенсорные. От специфических сенсорных ядер информация о характере сенсорных стимулов поступает в строго определенные участки III-IV слоев коры большого мозга. Нарушение функции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора большого мозга, имеют соматотопическую локализацию. Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвергируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса. Латеральное коленчатое тело имеет прямые эфферентные связи с затылочной долей коры большого мозга и афферентные связи с сетчаткой глаза и с передними буграми четверохолмий. Нейроны латеральных коленчатых тел по-разному реагируют на цветовые раздражения, включение, выключение света, т.е. могут выполнять детекторную функцию. В медиальное коленчатое тело поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферентные пути от медиальных коленчатых тел идут в височную зону коры большого мозга, достигая там первичной слуховой области коры.

Несенсорные ядра переключают в кору несенсорную импульсацию, поступающую в таламус из разных отделов головного мозга. В передние ядра импульсация поступает в основном из сосочковых тел гипоталамуса. Нейроны передних ядер проецируются в лимбическую кору, откуда аксонные связи идут к гиппокампу и опять к гипоталамусу, в результате чего образуется нейронный круг, движение возбуждения по которому обеспечивает формирование эмоций («эмоциональное кольцо Пейпеца»). В связи с этим передние ядра таламуса рассматриваются как часть лимбической системы. Вентральные ядра участвуют в регуляции движения, выполняя таким образом моторную функцию. В этих ядрах переключается импульсация от базальных ганглиев, зубчатого ядра мозжечка, красного ядра среднего мозга, которая после этого проецируется в моторную и премоторную кору. Через эти ядра таламуса происходит передача в моторную кору сложных двигательных программ, образованных в мозжечке и базальных ганглиях.

Неспецифические ядра

Эволюционно более древняя часть таламуса, включающая парные ретикулярные ядра и интраламинарную (внутрипластинчатую) ядерную группу. Ретикулярные ядра содержат преимущественно мелкие, многоотростчатые нейроны и функционально рассматриваются как производное ретикулярной формации ствола мозга. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя диффузные связи. К неспецифическим ядрам поступают связи из ретикулярной формации ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса. Благодаря этим связям неспецифические ядра таламуса выступают в роли посредника между стволом мозга и мозжечком, с одной стороны, и новой корой, лимбической системой и базальными ганглиями, с другой стороны, объединяя их в единый функциональный комплекс.

Ассоциативные ядра

Ассоциативные ядра принимают импульсацию от других ядер таламуса. Эфферентные выходы от них направляются, главным образом, в ассоциативные поля коры. Основными клеточными структурами этих ядер являются мультиполярные, биполярные трехотростчатые нейроны, т. е. нейроны, способные выполнять полисенсорные функции. Ряд нейронов изменяет активность только при одновременном комплексном раздражении. Подушка получает главную импульсацию от коленчатых тел и неспецифических ядер таламуса. Эфферентные пути идут от нее в височно-теменно-затылочные зоны коры, участвующие в гностических (узнавание предметов, явлений), речевых и зрительных функциях (интеграция слова со зрительным образом), а также в восприятии «схемы тела». Медиодорсальное ядро получает импульсацию от гипоталамуса, миндалины, гиппокампа, таламических ядер, центрального серого вещества ствола. Проекция этого ядра распространяется на ассоциативную лобную и лимбическую кору. Оно участвует в формировании эмоциональной и поведенческой двигательной активности. Латеральные ядра получают зрительную и слуховую импульсацию от коленчатых тел и соматосенсорную импульсацию от вентрального ядра.

Сложное строение таламуса, наличие в нем взаимосвязанных специфических, неспецифических и ассоциативных ядер, позволяет ему организовывать такие двигательные реакции, как сосание, жевание, глотание, смех. Двигательные реакции интегрируются в таламусе с вегетативными процессами, обеспечивающими эти движения.

Из промежуточного мозгового пузыря развиваются зрительный бугор и подбугорная область (гипоталамус), из полости промежуточного мозгового пузыря - III желудочек.

Зрительный бугор, или таламус, расположен по сторонам III желудочка и состоит из мощного скопления серого вещества. Зрительный бугор делят на собственно зрительный бугор, надбугорную (надталамическая область, или эпиталамус) и забугорную (заталамическая область, или метаталамус). Основную массу серого бугра составляет таламус. В нем выделяют выпячивание - подушку, кзади от которой имеются два возвышения - наружное и внутреннее коленчатые тела (они входят в забугорную область). В таламусе различают несколько ядерных групп.

Надбугорная область, или эпиталамус, состоит из шишковидной железы и задней спайки мозга.

Забугорная область, или метаталамус, включает в себя коленчатые тела, являющиеся возвышением таламуса. Они лежат кнаружи и книзу от подушки таламуса.

Подбугорная область, или гипоталамус, лежит книзу от таламуса, имеет ряд ядер, лежащих в стенках III желудочка.

Зрительный бугор является важным этапом на пути проведения всех видов чувствительности. К нему подходят и в нем сосредоточиваются чувствительные пути - осязание, болевое, температурное чувство, зрительные тракты, слуховые пути, обонятельные пути и волокна от экстрапирамидной системы. От нейронов зрительного бугра начинается следующий этап передачи чувствительных импульсов - в кору головного мозга. На определенном этапе эволюции нервной системы таламус был центром чувствительности, подобно тому, как стриопаллидарная система - механизмом движений. По мере появления и развития коры головного мозга основная роль в функции чувствительной сферы перешла к коре головного мозга, а зрительный бугор остался лишь передаточной станцией чувствительных импульсов от периферии к коре мозга. Поскольку таламус на определенных эволюционных этапах развития мозга был центром чувствительности, он тесно связан со стриопаллидарной системой - бывшим центром движений. Весь этот аппарат в целом нередко называют таламостриопаллидарной системой, где афферентным звеном является таламус, а эфферентным - стриопаллидарная система.

Таким образом, зрительный бугор служит передаточной чувствительной станцией для всех видов чувствительности, поэтому имеет важное значение в формировании ощущений. В этом - одно из важнейших функциональных его значений. Кроме того, таламус принимает участие в активизации процессов внимания и в организации эмоций. На уровне таламуса происходит формирование сложных психорефлексов, эмоций смеха и плача. Тесная связь зрительного бугра со стриопаллидарной системой обусловливает его соучастие в обеспечении сенсорного (чувствительного) компонента автоматизированных движений (т. е. имеет отношение к влиянию экстрапирамидной системы на движения).

Надбугорная область, или эпиталамус, включает в себя шишковидную железу и заднюю спайку мозга. Шишковидная железа принимает участие в развитии половых признаков и в регуляции секреторной деятельности одной из важнейших желез внутренней секреции - надпочечников. Задняя спайка мозга входит в состав стенок III желудочка. Забугорная область - метаталамус, состоящий из наружного и внутреннего коленчатых тел, имеет отношение к проведению зрительных (наружные коленчатые тела) и слуховых (внутренние коленчатые тела) импульсов.

Очень важна в функциональном отношении подбугорная область - гипоталамус.

Введение

Таламус (зрительный бугор)

Гипоталамус

Заключение

Медиальное коленчатое тело находится позади подушки таламуса; вместе с нижними холмиками пластинки крыши среднего мозга оно является подкорковым центром слухового анализатора.

Латеральное коленчатое тело располагается книзу от подушки таламуса. Вместе с верхними бугорками четверохолмия оно образует подкорковый центр зрительного анализатора.

Эпиталамус (надталамическая область) включает шишковидное тело (эпифиз), поводки и треугольники поводков . В треугольниках поводков залегают ядра, относящиеся к обонятельному анализатору. Поводки отходят от треугольников поводков, идут каудально, соединяются посредством спайки и переходят в шишковидное тело. Последнее как бы подвешено на них и располагается между верхними бугорками четверохолмия. Шишковидное тело является железой внутренней секреции. Его функции полностью не установлены, предполагается, что оно регулирует наступление полового созревания.

Таламус (зрительный бугор)

Общее строение и расположение таламуса.

Рисунок 1. Промежуточный мозг на сагиттальном разрезе.

Толща серого вещества таламуса разделена вертикальной Y-образной прослойкой (пластинкой) белого вещества на три части - переднюю, медиальную и латеральную.

Медиальная поверхность таламуса хорошо видна на сагиттальном (сагиттальный - стреловидный (лат. "sagitta" - стрела), делящей на симметричные правую и левую половины) разрезе мозга (рис.1). Медиальная (т.е. располагающаяся ближе к середине) поверхность правого и левого таламусов, обращенные друг к другу, образуют боковые стенки III мозгового желудочка (полость промежуточного мозга) посередине они соединены между собой межталамическим сращением .

Передняя (нижняя) поверхность таламусов сращена с гипоталамусом, через нее с каудальной стороны (т.е. находящейся ближе к нижней части тела) в промежуточный мозг входят проводящие пути из ножек мозга.

Латеральная ( т.е. боковая) поверхность таламуса граничит с внутренней капсулой - слоем белого вещества полушарий головного мозга, состоящего из проекционных волокон, соединяющих кору полушарий с нижележащими мозговыми структурами.

В каждой из этих частей таламуса находится несколько групп таламических ядер . Всего в таламусе содержится от 40 до 150 специализированных ядер .

Функциональное значение ядер таламуса.

По топографии ядра таламуса объединяют в 8 основных групп:

1. переднюю группу;

2. медиодорсальную группу;

3. группу ядер средней линии;

4. дорсолатеральную группу;

5. вентролатеральную группу;

6. вентральную заднемедиальную группу;

7. заднюю группу (ядра подушки таламуса);

8. интраламинарную группу.

Ядра таламуса делят на сенсорные ( специфические и неспецифические), моторные и ассоциативные . Рассмотрим основные группы ядер таламуса, необходимые для понимания его функциональной роли в передаче сенсорной информации в кору больших полушарий.

В передней части таламуса располагается передняя группа таламических ядер ( рис.2). Наиболее крупные из них - передневентральное ядро и переднемедиальное ядро. Они получают афферентные волокна от сосцевидных тел - обонятельного центра промежуточного мозга. Эфферентные волокна (нисходящие, т.е. выносящие импульсы из мозга) от передних ядер направляются к поясной извилине коры больших полушарий.

Передняя группа таламических ядер и связанные с нею структуры являются важным компонентом лимбической системы мозга, управляющей психоэмоциональным поведением .

Рис. 2. Топография ядер таламуса

В медиальной части таламуса различают медиодорсалъное ядро и группу ядер средней линии.

Медиодорсальное ядро имеет двусторонние связи с обонятельной корой лобной доли и поясной извилиной больших полушарий, миндалевидным телом и переднемедиальным ядром таламуса. Функционально оно тесно связано также с лимбической системой и имеет двусторонние связи с корой теменной, височной и островковой долей мозга.

Медиодорсальное ядро участвует в реализации высших психических процессов. Его разрушение приводит к снижению беспокойства, тревожности, напряженности, агрессивности, устранению навязчивых мыслей.

Ядра средней линии многочисленны и занимают наиболее медиальное положение в таламусе. Они получают афферентные (т.е. восходящие) волокна от гипоталамуса, от ядер шва, голубого пятна ретикулярной формации ствола мозга и частично от спинно-таламических путей в составе медиальной петли. Эфферентные волокна от ядер средней линии направляются к гиппокампу, миндалевидному телу и поясной извилине больших полушарий, входящих в состав лимбической системы. Связи с корой больших полушарий двусторонние.

Ядра средней линии играют важную роль в процессах пробуждения и активации коры больших полушарий, а также в обеспечении процессов памяти.

В латеральной (т.е. боковой) части таламуса располагаются дорсолатералъная, вентролатеральная, вентральная заднемедиальная и задняя группы ядер.

Ядра дорсолатералъной группы относительно мало изучены. Известно, что они причастны к системе восприятия боли.

Ядра вентролатералъной группы анатомически и функционально различаются между собой. Задние ядра вентролатеральной группы часто рассматриваются как одно вентролатеральное ядро таламуса. Эта группа получает волокна восходящего пути общей чувствительности в составе медиальной петли. Сюда приходят также волокна вкусовой чувствительности и волокна от вестибулярных ядер. Эфферентные волокна, начинающиеся от ядер вентролатеральной группы, направляются в кору теменной доли больших полушарий, куда проводят соматосенсорную информацию от всего тела.

К ядрам задней группы (ядра подушки таламуса) идут афферентные волокна от верхних холмиков четверохолмия и волокна в составе зрительных трактов. Эфферентные волокна широко распространяются в коре лобной, теменной, затылочной, височной и лимбической долей больших полушарий.

Ядерные центры подушки таламуса причастны к комплексному анализу различных сенсорных раздражителей. Они играют значительную роль в перцептивной (связанной с восприятием) и когнитивной (познавательной, мыслительной) деятельности мозга, а также в процессах памяти - хранения и воспроизведения информации.

Интраламинарная группа ядер таламуса лежит в толще вертикальной Y-образной прослойки белого вещества. Интраламинарные ядра взаимосвязаны с базальными ядрами, зубчатым ядром мозжечка и корой больших полушарий.

Эти ядра играют важную роль в активационной системе мозга. Повреждение интраламинарных ядер в обоих таламусах приводит к резкому снижению двигательной активности, а также апатии и разрушению мотивационной структуры личности.

Кора больших полушарий благодаря двусторонним связям с ядрами таламуса способна оказывать регулирующее воздействие на их функциональную активность.

Таким образом, основными функциями таламуса являются:

переработка сенсорной информации от рецепторов и подкорковых переключающих центров с последующей передачей её коре;

участие в регуляции движений;

обеспечение связи и интеграции различных отделов мозга .

Гипоталамус

Общее строение и расположение гипоталамуса.

Гипоталамус ( hypothalamus) представляет собой вентральный отдел (т.е. брюшной) промежуточного мозга. В его состав входит комплекс образований, расположенных под III желудочком. Гипоталамус спереди ограничивается зрительным перекрестом ( хиазмой), латерально - передней частью субталамуса, внутренней капсулой и зрительными трактами, отходящими от хиазмы. Сзади гипоталамус продолжается в покрышку среднего мозга. К гипоталамусу относят сосцевидные тела, серый бугор и зрительный перекрест. Сосцевидные тела располагаются по бокам средней линии кпереди от заднего продырявленного вещества. Это образования неправильной шаровидной формы белого цвета. Спереди от серого бугра располагается зрительный перекрёст . В нём происходит переход на противоположную сторону части волокон зрительного нерва, идущей от медиальной половины сетчатки. После перекрёста формируются зрительные тракты.

Серый бугор располагается кпереди от сосцевидных тел, между зрительными трактами. Серый бугор является полым выступом нижней стенки III желудочка, образованной тонкой пластинкой серого вещества. Верхушка серого бугра вытянута в узкую полую воронку , на конце которой находится гипофиз [ 4; 18].

Гипофиз: строение и функционирование

Гипофиз (hypophysis) - железа внутренней секреции, он располагается в специальном углублении основания черепа, "турецком седле" и при помощи ножки связан с основанием мозга. В гипофизе выделяют переднюю долю (аденогипофиз - железистый гипофиз ) и заднюю долю (нейрогипофиз ).

Задняя доля, или нейрогипофиз, состоит из нейроглиальных клеток и является продолжением воронки гипоталамуса. Более крупная доля - аденогипофиз, построена из железистых клеток. Благодаря тесному взаимодействию гипоталамуса с гипофизом в промежуточном мозге функционирует единая гипиталамо-гипофизарная система, управляющая работой всех эндокринных желез, а с их помощью - вегетативными функциями организма (рис.3).

Рисунок 3. Гипофиз и его влияние на другие эндокринные железы

В сером веществе гипоталамуса выделяют 32 пары ядер. Взаимодействие с гипофизом осуществляется посредством выделяемых ядрами гипоталамуса нейрогормонов - рилизинг-гормонов . По системе кровеносных сосудов они попадают в переднюю долю гипофиза (аденогипофиз), где способствуют высвобождению тропных гормонов, стимулирующих синтез специфических гормонов в других эндокринных железах.

В передней доле гипофиза вырабатываются тропные гормоны (тиреотропный гормон - тиреотропин, адренокортикотропный гормон - кортикотропин и гонадотропные гормоны - гонадотропины) и эффекторные гормоны (гормоны роста - соматотропин и пролактин) .

Гормоны передней доли гипофиза

Тиреотропный гормон (тиреотропин) стимулирует функцию щитовидной железы. Если удалить или разрушить гипофиз у животных, то наступает атрофия щитовидной железы, а введение тиреотропина восстанавливает ее функции.

Адренокортикотропный гормон (кортикотропин) стимулирует функцию пучковой зоны коры надпочечников, в которой образуются гормоны глюкокортикоиды. В меньшей степени выражено влияние гормона на клубочковую и сетчатую зоны. Удаление гипофиза у животных приводит к атрофии коркового слоя надпочечников. Атрофические процессы захватывают все зоны коры надпочечников, но наиболее глубокие изменения происходят в клетках сетчатой и пучковой зонах. Вненадпочечниковое действие кортикотропина выражается в стимуляции процессов липолиза, усилении пигментации, анаболическом влиянии.

Гонадотропные гормоны (гонадотропины). Фолликулостимулирующий гормон (фоллитропин) стимулирует рост везикулярного фолликула в яичнике. Влияние фоллитропина на образование женских половых гормонов (эстрогенов) небольшое. Этот гормон имеется как у женщин, так и у мужчин. У мужчин под влиянием фоллитропина происходит образование половых клеток (сперматозоидов). Лютеинизирующий гормон (лютропин) необходим для роста везикулярного фолликула яичника на стадиях, предшествующих овуляции, и для самой овуляции (разрыва оболочки созревшего фолликула и выхода из него яйцеклетки), образования желтого тела на месте лопнувшего фолликула. Лютропин стимулирует образование женских половых гормонов - эстрогенов. Однако для того чтобы этот гормон осуществил свое действие на яичник, необходимо предварительное длительное действие фоллитропина. Лютропин стимулирует выработку прогестерона желтым телом. Лютропин имеется как у женщин, так и у мужчин. У мужчин он способствует образованию мужских половых гормонов - андрогенов.

Эффекторные:

Гормон роста (соматотропин) стимулирует рост организма путем усиления образования белка. Под влиянием роста эпифизарных хрящей в длинных костях верхних и нижних конечностей происходит рост костей в длину. Гормон роста усиливает секрецию инсулина посредством соматомединов, образующихся в печени.

Пролактин стимулирует образование молока в альвеолах молочных желез. Свое действие на молочные железы пролактин оказывает после предварительного действия на них женских половых гормонов прогестерона и эстрогенов. Акт сосания стимулирует образование и выделение пролактина. Пролактин обладает также и лютеотропным действием (способствует продолжительному функционированию желтого тела и образованию им гормона прогестерона) .

Процессы в задней доле гипофиза

В задней доле гипофиза гормоны не вырабатываются. Сюда поступают неактивные гормоны, которые синтезируются в паравентрикулярном и супраоптическом ядрах гипоталамуса.

В нейронах паравентрикулярного ядра образуется преимущественно гормон окситоцин, а в нейронах супраоптического ядра - вазопрессин (антидиуретический гормон). Эти гормоны накапливаются в клетках задней доли гипофиза, где они превращаются в активные гормоны.

Вазопрессин (антидиуретический гормон) играет важную роль в процессах мочеобразования и в меньшей степени в регуляции тонуса кровеносных сосудов. Вазопрессин, или антидиуретический гормон - АДГ (диурез - выделение мочи) - стимулирует обратное всасывание (резорбцию) воды в почечных канальцах.

Окситоцин (оцитонин) усиливает сокращение матки. Ее сокращение резко усиливается, если она предварительно находилась под действием женских половых гормонов эстрогенов. Во время беременности окситоцин не влияет на матку, так как под влиянием гормона желтого тела прогестерона она становится нечувствительной к окситоцину. Механическое раздражение шейки матки вызывает отделение окситоцина рефлекторно. Окситоцин обладает способностью стимулировать также выделение молока. Акт сосания рефлекторно способствует выделению окситоцина из нейрогипофиза и выделению молока. В состоянии напряжения организма гипофиз выделяет дополнительное количество АКТГ, стимулирующего выброс адаптивных гормонов корой надпочечников .

Функциональное значение ядер гипоталамуса

В передне-боковой части гипоталамусаразличают переднюю и среднюю группы гипоталамических ядер (рис.4).


Рисунок 4. Топография ядер гипоталамуса

К передней группе относятся супрахиазматические ядра, преоптическое ядро, и самые крупные - супраоптическое и паравентрикулярное ядра.

В ядрах передней группы локализуются:

центр парасимпатического отдела (ПСНС) вегетативной нервной системы.

Стимуляция переднего отдела гипоталамуса приводит к реакциям парасимпатического типа: сужению зрачка, снижению частоты сокращений сердца, расширению просвета сосудов, падению артериального давления, усилению перистальтики (т.е. волнообразного сокращения стенок полых трубчатых органов, способствующего продвижению их содержимого к выходным отверстиям кишечника);

центр теплоотдачи. Разрушение переднего отдела сопровождается необратимым повышением температуры тела;

центр жажды;

нейросекреторные клетки, продуцирующие вазопрессин (супраоптическое ядро ) и окситоцин (паравентрикулярное ядро ). В нейронах паравентрикулярного и супраоптических ядер образуется нейросекрет, который по их аксонам перемещается в задний отдел гипофиза (нейрогипофиз), где высвобождается в виде нейрогормонов - вазопрессина и окситоцина , поступающих в кровь.

Повреждение передних ядер гипоталамуса приводит к прекращению выделения вазопрессина, вследствие чего развивается несахарный диабет . Окситоцин оказывает стимулирующее действие на гладкую мускулатуру внутренних органов, например матки. В целом от этих гормонов зависит водносолевой баланс организма.

В преоптическом ядре образуется один из рилизинг-гормонов - люлиберин, стимулирующий выработку в аденогипофизе лютеинизирующего гормона, контролирующего активность половых желез.

Супрахиазматические ядра принимают активное участие в регуляции циклических изменений активности организма - циркадианных, или суточных, биоритмов (например, в чередовании сна и бодрствования).

К средней группе гипоталамических ядер относят дорсомедиальное и вент-ромедиальное ядра, ядро серого бугра и ядро воронки.

В ядрах средней группы локализуются:

центр голода и насыщения. Разрушение вентромедиального ядра гипоталамуса приводит к избыточному потреблению пищи (гиперфагии) и ожирению, а повреждение ядра серою бугра - к снижению аппетита и резкому исхуданию (кахексии);

центр полового поведения;

центр агрессии;

центр удовольствия, играющий важную роль в процессах формирования мотиваций и психоэмоциональных форм поведения;

нейросекреторные клетки, продуцирующие рилизинг-гормоны (либерины и статины), регулирующие продукцию гипофизарных гормонов: соматостатин, соматолиберин, люлиберин, фоллиберин, пролактолиберин, тиреолиберин и др. Через гипоталамо-гипофизарную систему они оказывают влияние на ростовые процессы, скорость физического развития и полового созревания, формирование вторичных половых признаков, функции половой системы, а также на обмен веществ.

Средняя группа ядер контролирует водный, жировой и углеводный обмен, влияет на уровень сахара в крови, ионный баланс организма, проницаемость сосудов и клеточных мембран.

Задняя часть гипоталамусарасположена между серым бугром и задним продырявленным веществом и состоит из правого и левого сосцевидных тел.

В задней части гипоталамуса наиболее крупными ядрами являются: медиальное и латеральное ядра, заднее гипоталамическое ядро .

В ядрах задней группы локализуются:

центр, координирующий активность симпатического отдела (СНС) вегетативной нервной системы (заднее гипоталамическое ядро ). Стимуляция этого ядра приводит к реакциям симпатического типа: расширению зрачка, повышению частоты сокращений сердца и артериального давления, учащению дыхания и уменьшению тонических сокращений кишечника;

центр теплопродукции (заднее гипоталамическое ядро ). Разрушение заднего отдела гипоталамуса вызывает вялость, сонливость и снижение температуры тела;

подкорковые центры обонятельного анализатора. Медиальное и латеральное ядра в каждом сосцевидном теле являются подкорковыми центрами обонятельного анализатора, а также входят в лимбическую систему;

нейросекреторные клетки, продуцирующие рилизинг-гормоны, регулирующие продукцию гипофизарных гормонов .

Особенности кровоснабжения гипоталамуса

Ядра гипоталамуса получают обильное кровоснабжение. Капиллярная сеть гипоталамуса по своей разветвлённости в несколько раз больше, чем в других отделах ЦНС. Одной из особенностей капилляров гипоталамуса является их высокая проницаемость, обусловленная истонченностью стенок капилляров и их фенестрированностью ("окончатостью" - наличие промежутков - "окон" - между смежными эндотелиальными клетками капилляров (от лат. "fenestra " - окно). В результате этого в гипоталамусе слабо выражен гематоэнцефалический барьер (ГЭБ), и нейроны гипоталамуса способны воспринимать изменения состава спинномозговой жидкости и крови (температуру, содержание ионов, наличие и количество гормонов и т.д.).

Функциональное значение гипоталамуса

Гипоталамус является центральным звеном, связующим нервные и гуморальные механизмы регуляции вегетативных функций организма. Управляющая функция гипоталамуса обусловлена способностью его клеток к секреции и аксональному транспорту регуляторных веществ, которые переносится в другие структуры мозга, спинномозговую жидкость, кровь или в гипофиз, изменяя функциональную активность органов-мишеней.

В гипоталамусе выделяют 4 нейроэндокринные системы:

Гипоталамо-экстрагипоталамная система представлена нейросекреторными клетками гипоталамуса, аксоны которых уходят в таламус, структуры лимбической системы, продолговатый мозг. Эти клетки выделяют эндогенные опиоиды, соматостатин и др.

Гипоталамо-аденогипофизарная система связывает ядра заднего гипоталамуса с передней долей гипофиза. По этому пути транспортируются рилизинг-гормоны (либерины и статины). Посредством их гипоталамус регулирует секрецию тропных гормонов аденогипофиза, определяющих секреторную активность желёз внутренней секреции (щитовидной, половых и др.).

Гипоталамо-метагипофизарная система связывает нейросекреторные клетки гипоталамуса с гипофизом. По аксонам этих клеток транспортируются меланостатин и меланолиберин, которые регулируют синтез меланина - пигмента, определяющего окраску кожи, волос, радужки и других тканей организма.

Гипоталамо-нейрогипофизарная система связывает ядра переднего гипоталамуса с задней (железистой) долей гипофиза. По этим аксонам транспортируются вазопрессин и окситоцин, которые накапливаются в задней доле гипофиза и выделяются в кровоток по мере необходимости .

Заключение

Таким образом, дорсальный отдел промежуточного мозга представляет собой филогенетически более молодой таламический мозг, являющийся высшим подкорковым сенсорным центром, в котором переключаются практически все афферентные пути, несущие сенсорную информацию от органов тела и органов чувств к большим полушариям головного мозга. К задачам гипоталамуса относится также управление психоэмоциональным поведением и участие в реализации высших психических и психологических процессов, в частности памяти.

Вентральный отдел - гипоталамус являетсяболее старым в филогенетическом отношении образованием. Гипоталамо-гипофизарная система осуществляет контроль над гуморальной регуляцией водносолевого баланса, обменом веществ и энергии, работой иммунной системы, терморегуляцией, репродуктивной функцией и т.д. Выполняя и этой системе регулирующую роль, гипоталамус является высшим центром, управляющим автономной (вегетативной) нервной системой.

Список литературы

1. Анатомия человека / Под ред. М.Р. Сапина. - М.: Медицина, 1993.

2. Блум Ф., Лейзерсон А., Хофстедтер Л. Мозг, разум поведение. - М.: Мир, 1988.

3. Гистология / Под ред. В.Г. Елисеева. - М.: Медицина, 1983.

4. Привес М.Г., Лысенков Н.К., Бушкович В.И. Анатомия человека. - М.: Медицина, 1985.

5. Синельников Р.Д., Синельников Я.Р. Атлас анатомии человека. - М.: Медицина, 1994.

6. Тишевской И.А. Анатомия центральной нервной системы: Учебное пособие. - Челябинск: Изд-во ЮУрГУ, 2000.